To precisely evaluate the potential of metal-organic frameworks (MOFs) for gas separation and purification applications, it is crucial to understand how various molecules competitively adsorb inside MOFs. In this paper, we combine in situ infrared spectroscopy with ab initio calculations to investigate the mechanisms associated with coadsorption of several small molecules, including CO, NO, and CO inside the prototypical structure Ni-MOF-74. Surprisingly, we find that the displacement of CO bound inside Ni-MOF-74 (binding energy of 53 kJ/mol) is readily driven by CO exposure, even though CO has a noticeably weaker binding energy of only 41 kJ/mol; meanwhile, the significantly more strongly binding NO molecule (90 kJ/mol) is not able to easily displace bound CO inside Ni-MOF74.
View Article and Find Full Text PDFThe removal of carbon dioxide (CO) from acetylene (CH) is a critical industrial process for manufacturing high-purity CH. However, it remains challenging to address the tradeoff between adsorption capacity and selectivity, on account of their similar physical properties and molecular sizes. To overcome this difficulty, here we report a novel strategy involving the regulation of a hydrogen-bonding nanotrap on the pore surface to promote the separation of CH/CO mixtures in three isostructural metal-organic frameworks (MOFs, named MIL-160, CAU-10H, and CAU-23, respectively).
View Article and Find Full Text PDFThe defect concentration in the prototypical metal-organic framework UiO-66 can be well controlled during synthesis, leading to precisely tunable physicochemical properties for this structure. However, there has been a long-standing debate regarding the nature of the compensating species present at the defective sites. Here, we present unambiguous spectroscopic evidence that the missing-linker defect sites in an ambient environment are compensated with both carboxylate and water (bound through intermolecular hydrogen bonding), which is further supported by calculations.
View Article and Find Full Text PDFWe report the synthesis and characterization of a new class of 2D-covalent organic frameworks, called COFamides, whose layers are held together by amide hydrogen bonds. To accomplish this, we have designed monomers with a nonplanar structure that arises from steric crowding, forcing the amide side groups out of plane with the COF sheets orienting the hydrogen bonds between the layers. The presence of these hydrogen bonds provides significant structural stabilization as demonstrated by comparison to control structures that lack hydrogen bonding capability, resulting in lower surface area and crystallinity.
View Article and Find Full Text PDF