Publications by authors named "Haagmans B"

Setting up a global SARS-CoV-2 surveillance system requires an understanding of how virus isolation and propagation practices, use of animal or human sera, and different neutralisation assay platforms influence assessment of SARS-CoV-2 antigenicity. In this study, with the contribution of 15 independent laboratories across all WHO regions, we carried out a controlled analysis of neutralisation assay platforms using the first WHO International Standard for antibodies to SARS-CoV-2 variants of concern (source: NIBSC). Live virus isolates (source: WHO BioHub or individual labs) or spike plasmids (individual labs) for pseudovirus production were used to perform neutralisation assays using the same serum panels.

View Article and Find Full Text PDF
Article Synopsis
  • * This study investigated viral replication in the lungs of SARS-CoV-2-infected golden hamsters by using anti-dsRNA antibodies, demonstrating that dsRNA detection is most effective during the early stages of infection.
  • * Findings suggest that combining dsRNA and viral antigen detection could enhance understanding of viral replication, although further research is required to evaluate dsRNA's potential as an early infection marker in other viruses.
View Article and Find Full Text PDF
Article Synopsis
  • Scientists established a direct-contact transmission model for the SARS-CoV-2 Omicron BA.5 variant using Syrian hamsters, which are highly susceptible to the virus.
  • The research involved testing different inoculation doses and co-housing durations to ensure reliable transmission and comparing viral loads and tissue damage between infected donor and naïve recipient hamsters.
  • Results indicated that while both male and female hamsters could be infected similarly, males shed significantly more infectious virus; overall, the Omicron BA.5 variant resulted in lower viral loads and less severe symptoms compared to prior strains, highlighting the model's potential for studying new treatment strategies.
View Article and Find Full Text PDF
Article Synopsis
  • MERS-CoV is a serious respiratory virus with a high mortality rate and currently no licensed vaccines, prompting research into a candidate vaccine called MVA-MERS-S, which uses a modified vaccinia virus.
  • A phase 1b clinical trial was conducted with healthy volunteers (ages 18-55) across Germany and the Netherlands to evaluate the safety and immunogenicity of MVA-MERS-S, testing various dosing schedules and comparing it to a placebo group.
  • The trial involved 244 screened participants, with 140 randomly assigned to different dosing regimens, and the outcomes focused on both the safety of the vaccine and the resulting immune response measured through antibody levels and seroconversion rates.
View Article and Find Full Text PDF

Besides neutralizing antibodies, which are considered an important measure for vaccine immunogenicity, Fc-mediated antibody functions can contribute to antibody-mediated protection. They are strongly influenced by structural antibody properties such as subclass and Fc glycan composition. We here applied a systems serology approach to dissect humoral immune responses induced by MVA-MERS-S, an MVA-vectored vaccine against the Middle East respiratory syndrome coronavirus (MERS-CoV).

View Article and Find Full Text PDF

Unlabelled: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). Commonly used methods for both clinical diagnosis of SARS-CoV-2 infection and management of infected patients involve the detection of viral RNA, but the presence of infectious virus particles is unknown. Viability PCR (v-PCR) uses a photoreactive dye to bind non-infectious RNA, ideally resulting in the detection of RNA only from intact virions.

View Article and Find Full Text PDF

Neutralizing antibodies are considered a correlate of protection against severe human respiratory syncytial virus (HRSV) disease. Currently, HRSV neutralization assays are performed on immortalized cell lines like Vero or A549 cells. It is known that assays on these cell lines exclusively detect neutralizing antibodies (nAbs) directed to the fusion (F) protein.

View Article and Find Full Text PDF

Antigenic characterization of newly emerging SARS-CoV-2 variants is important to assess their immune escape and judge the need for future vaccine updates. To bridge data obtained from animal sera with human sera, we analyzed neutralizing antibody titers in human and hamster single infection sera in a highly controlled setting using the same authentic virus neutralization assay performed in one laboratory. Using a Bayesian framework, we found that titer fold changes in hamster sera corresponded well to human sera and that hamster sera generally exhibited higher reactivity.

View Article and Find Full Text PDF
Article Synopsis
  • Antibody responses from COVID-19 vaccinations are decreasing, especially with the rise of the Omicron variant, prompting the need for new bivalent mRNA booster vaccines containing both ancestral and Omicron spike proteins.
  • A study evaluated how different initial vaccination regimens (priming) influenced the effectiveness of these bivalent boosters, revealing that while the boosters increased neutralizing antibodies and T-cell responses, they were less effective against the newer XBB.1.5 variant.
  • The findings support using vaccines tailored to current circulating strains for vulnerable populations and stress the need for ongoing monitoring of immune responses to inform future vaccination strategies.
View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on monitoring the evolution of SARS-CoV-2 variants to assess their ability to evade immune responses, emphasizing the importance of different neutralization assays and various serum samples.
  • - Comparisons were made among datasets using human, hamster, and mouse serum, revealing that animal models, especially hamsters, generally yielded higher neutralization titers than human samples, while showing consistent patterns across assays.
  • - The findings suggest a shift in SARS-CoV-2 surveillance strategies from relying solely on human serum from first infections to incorporating serum from animal models, particularly hamsters, for more reliable results.
View Article and Find Full Text PDF

Monoclonal antibodies are an increasingly important tool for prophylaxis and treatment of acute virus infections like SARS-CoV-2 infection. However, their use is often restricted due to the time required for development, variable yields and high production costs, as well as the need for adaptation to newly emerging virus variants. Here we use the genetically modified filamentous fungus expression system Thermothelomyces heterothallica (C1), which has a naturally high biosynthesis capacity for secretory enzymes and other proteins, to produce a human monoclonal IgG1 antibody (HuMab 87G7) that neutralises the SARS-CoV-2 variants of concern (VOCs) Alpha, Beta, Gamma, Delta, and Omicron.

View Article and Find Full Text PDF

Unlabelled: Human metapneumovirus (HMPV), a member of the family, causes upper and lower respiratory tract infections in humans. studies with HMPV have mostly been performed in monolayers of undifferentiated epithelial cells. studies in cynomolgus macaques and cotton rats have shown that ciliated epithelial cells are the main target of HMPV infection, but these observations cannot be studied in monolayer systems.

View Article and Find Full Text PDF
Article Synopsis
  • The conjunctival epithelium has two key cell types: goblet cells that produce mucus and keratinocytes that secrete water, with keratinocytes presenting mucins on their surface.
  • Research involves long-term organoid cultures of human and mouse conjunctiva, revealing essential gene expression and identification of conjunctival stem cells.
  • The study also explores viral infections (HSV1, hAdV8, SARS-CoV-2) in conjunctival cultures, demonstrating treatment options for some infections and documenting gene expression changes induced by these viruses, highlighting the potential for organoid transplantation to study conjunctival health and disease.
View Article and Find Full Text PDF

Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a rare autoimmune condition associated with recombinant adenovirus (rAV)-based COVID-19 vaccines. It is thought to arise from autoantibodies targeting platelet factor 4 (aPF4), triggered by vaccine-induced inflammation and the formation of neo-antigenic complexes between PF4 and the rAV vector. To investigate the specific induction of aPF4 by rAV-based vaccines, we examined sera from rAV vaccine recipients (AZD1222, AD26.

View Article and Find Full Text PDF

Purpose: Pulmonary emboli (PE) contribute substantially to coronavirus disease 2019 (COVID-19) related mortality and morbidity. Immune cell-mediated hyperinflammation drives the procoagulant state in COVID-19 patients, resulting in immunothrombosis. To study the role of peripheral blood mononuclear cells (PBMC) in the procoagulant state of COVID-19 patients, we performed a functional bioassay and related outcomes to the occurrence of PE.

View Article and Find Full Text PDF

The COVID-19 pandemic caused by SARS-CoV-2, lead to mild to severe respiratory illness and resulted in 6.9 million deaths worldwide. Although vaccines are effective in preventing COVID-19, they may not be sufficient to protect immunocompromised individuals from this respiratory illness.

View Article and Find Full Text PDF

Over the last two decades the world has witnessed the global spread of two genetically related highly pathogenic coronaviruses, severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. However, the impact of these outbreaks differed significantly with respect to the hospitalizations and fatalities seen worldwide. While many studies have been performed recently on SARS-CoV-2, a comparative pathogenesis analysis with SARS-CoV may further provide critical insights into the mechanisms of disease that drive coronavirus-induced respiratory disease.

View Article and Find Full Text PDF

The antigenic evolution of SARS-CoV-2 requires ongoing monitoring to judge the immune escape of newly arising variants. A surveillance system necessitates an understanding of differences in neutralization titers measured in different assays and using human and animal sera. We compared 18 datasets generated using human, hamster, and mouse sera, and six different neutralization assays.

View Article and Find Full Text PDF

The mRNA-based BNT162b2 protects against severe disease and mortality caused by SARS-CoV-2 via induction of specific antibody and T-cell responses. Much less is known about its broad effects on immune responses against other pathogens. Here, we investigated the adaptive immune responses induced by BNT162b2 vaccination against various SARS-CoV-2 variants and its effects on the responsiveness of immune cells upon stimulation with heterologous stimuli.

View Article and Find Full Text PDF

SARS coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, emerged in China in December 2019. Vaccines developed were very effective initially, however, the virus has shown remarkable evolution with multiple variants spreading globally over the last three years. Nowadays, newly emerging Omicron lineages are gaining substitutions at a fast rate, resulting in escape from neutralization by antibodies that target the Spike protein.

View Article and Find Full Text PDF

The relevance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ORF8 in the pathogenesis of COVID-19 is unclear. Virus natural isolates with deletions in ORF8 were associated with wild milder disease, suggesting that ORF8 might contribute to SARS-CoV-2 virulence. This manuscript shows that ORF8 is involved in inflammation and in the activation of macrophages in two experimental systems: humanized K18-hACE2 transgenic mice and organoid-derived human airway cells.

View Article and Find Full Text PDF

Mucins play an essential role in protecting the respiratory tract against microbial infections while also acting as binding sites for bacterial and viral adhesins. The heavily O-glycosylated gel-forming mucins MUC5AC and MUC5B eliminate pathogens by mucociliary clearance. Transmembrane mucins MUC1, MUC4, and MUC16 can restrict microbial invasion at the apical surface of the epithelium.

View Article and Find Full Text PDF

SARS-CoV-2 can enter cells after its spike protein is cleaved by either type II transmembrane serine proteases (TTSPs), like TMPRSS2, or cathepsins. It is now widely accepted that the Omicron variant uses TMPRSS2 less efficiently and instead enters cells via cathepsins, but these findings have yet to be verified in more relevant cell models. Although we could confirm efficient cathepsin-mediated entry for Omicron in a monkey kidney cell line, experiments with protease inhibitors showed that Omicron (BA.

View Article and Find Full Text PDF