Amniotic membrane, being part of the placenta, is discarded as medical waste after childbirth. It can be decellularized to convert it into an acellular material while retaining the extracellular matrix. Such amniotic membrane grafts support stem cell adhesion, growth, and proliferation.
View Article and Find Full Text PDFAdipose-derived stromal/stem cells (ASCs) and decellularized adipose tissue (DAT) are adipose tissue products obtained from individuals undergoing fat removal procedures like liposuction, lipectomy, or breast reduction. DAT hydrogel is prepared by removing the cells from the adipose tissue and digesting it to form a liquid material that forms a gel at physiological temperature. ASCs seeded on DAT have displayed osteogenic potential in vitro and in animal models of bone defects.
View Article and Find Full Text PDFExtracellular matrix-based bio-scaffolds are useful for tissue engineering as they retain the unique structural, mechanical, and physiological microenvironment of the tissue thus facilitating cellular attachment and matrix activities. However, considering its potential, a comprehensive understanding of the protein profile remains elusive. Herein, we evaluate the impact of decellularization on the human amniotic membrane (hAM) based on its proteome profile, physicochemical features, as well as the attachment, viability, and proliferation of umbilical cord-derived mesenchymal stem cells (hUC-MSC).
View Article and Find Full Text PDF