Publications by authors named "HaDi MaBouDi"

The traditional understanding of brain function has predominantly focused on chemical and electrical processes. However, new research in fruit fly (Drosophila) binocular vision reveals ultrafast photomechanical photoreceptor movements significantly enhance information processing, thereby impacting a fly's perception of its environment and behaviour. The coding advantages resulting from these mechanical processes suggest that similar physical motion-based coding strategies may affect neural communication ubiquitously.

View Article and Find Full Text PDF

Honey bee ecology demands they make both rapid and accurate assessments of which flowers are most likely to offer them nectar or pollen. To understand the mechanisms of honey bee decision-making, we examined their speed and accuracy of both flower acceptance and rejection decisions. We used a controlled flight arena that varied both the likelihood of a stimulus offering reward and punishment and the quality of evidence for stimuli.

View Article and Find Full Text PDF

The astonishing behavioural repertoires of social insects have been thought largely innate, but these insects have repeatedly demonstrated remarkable capacities for both individual and social learning. Using the bumblebee Bombus terrestris as a model, we developed a two-option puzzle box task and used open diffusion paradigms to observe the transmission of novel, nonnatural foraging behaviours through populations. Box-opening behaviour spread through colonies seeded with a demonstrator trained to perform 1 of the 2 possible behavioural variants, and the observers acquired the demonstrated variant.

View Article and Find Full Text PDF

We examined how bees solve a visual discrimination task with stimuli commonly used in numerical cognition studies. Bees performed well on the task, but additional tests showed that they had learned continuous (non-numerical) cues. A network model using biologically plausible visual feature filtering and a simple associative rule was capable of learning the task using only continuous cues inherent in the training stimuli, with no numerical processing.

View Article and Find Full Text PDF

Using social information can be an efficient strategy for learning in a new environment while reducing the risks associated with trial-and-error learning. Whereas social information from conspecifics has long been assumed to be preferentially attended by animals, heterospecifics can also provide relevant information. Because different species may vary in their informative value, using heterospecific social information indiscriminately can be ineffective and even detrimental.

View Article and Find Full Text PDF

Mapping animal performance in a behavioral task to underlying cognitive mechanisms and strategies is rarely straightforward, since a task may be solvable in more than one manner. Here, we show that bumblebees perform well on a concept-based visual discrimination task but spontaneously switch from a concept-based solution to a simpler heuristic with extended training, all while continually increasing performance. Bumblebees were trained in an arena to find rewards on displays with shapes of different sizes where they could not use low-level visual cues.

View Article and Find Full Text PDF

Honeybees forage on diverse flowers which vary in the amount and type of rewards they offer, and bees are challenged with maximizing the resources they gather for their colony. That bees are effective foragers is clear, but how bees solve this type of complex multi-choice task is unknown. Here, we set bees a five-comparison choice task in which five colours differed in their probability of offering reward and punishment.

View Article and Find Full Text PDF

Most research in comparative cognition focuses on measuring if animals manage certain tasks; fewer studies explore how animals might solve them. We investigated bumblebees' scanning strategies in a numerosity task, distinguishing patterns with two items from four and one from three, and subsequently transferring numerical information to novel numbers, shapes, and colors. Video analyses of flight paths indicate that bees do not determine the number of items by using a rapid assessment of number (as mammals do in "subitizing"); instead, they rely on sequential enumeration even when items are presented simultaneously and in small quantities.

View Article and Find Full Text PDF

True colour vision requires comparing the responses of different spectral classes of photoreceptors. In insects, there is a wealth of data available on the physiology of photoreceptors and on colour-dependent behaviour, but less is known about the neural mechanisms that link the two. The available information in bees indicates a diversity of colour opponent neurons in the visual optic ganglia that significantly exceeds that known in humans and other primates.

View Article and Find Full Text PDF

When counting-like abilities were first described in the honeybee in the mid-1990s, many scholars were sceptical, but such capacities have since been confirmed in a number of paradigms and also in other insect species. Counter to the intuitive notion that counting is a cognitively advanced ability, neural network analyses indicate that it can be mediated by very small neural circuits, and we should therefore perhaps not be surprised that insects and other small-brained animals such as some small fish exhibit such abilities. One outstanding question is how bees actually acquire numerical information.

View Article and Find Full Text PDF

Synaptic plasticity is considered to be a basis for learning and memory. However, the relationship between synaptic arrangements and individual differences in learning and memory is poorly understood. Here, we explored how the density of microglomeruli (synaptic complexes) within specific regions of the bumblebee () brain relates to both visual learning and inter-individual differences in learning and memory performance on a visual discrimination task.

View Article and Find Full Text PDF

The honeybee olfactory system is a well-established model for understanding functional mechanisms of learning and memory. Olfactory stimuli are first processed in the antennal lobe, and then transferred to the mushroom body and lateral horn through dual pathways termed medial and lateral antennal lobe tracts (m-ALT and l-ALT). Recent studies reported that honeybees can perform elemental learning by associating an odour with a reward signal even after lesions in m-ALT or blocking the mushroom bodies.

View Article and Find Full Text PDF

Natural scenes contain richer perceptual information in their spatial phase structure than their amplitudes. Modeling phase structure of natural scenes may explain higher-order structure inherent to the natural scenes, which is neglected in most classical models of redundancy reduction. Only recently, a few models have represented images using a complex form of receptive fields (RFs) and analyze their complex responses in terms of amplitude and phase.

View Article and Find Full Text PDF