Publications by authors named "Ha-Young Won"

Background: Phthalates can cause respiratory and immunological disorders. However, little is known about the role of serum periostin and YKL-40 levels in mediating the effects of phthalates. We investigated the mediating role of these biomarkers in the relationship between phthalates and airway dysfunction.

View Article and Find Full Text PDF

Fibrillar amyloid-beta (fAβ) peptide causes neuronal cell death, which is known as Alzheimer's disease. One of the mechanisms for neuronal cell death is the activation of microglia which releases toxic compounds like reactive oxygen species (ROS) in response to fAβ. We observed that fAβ rather than soluble form blocked BV2 cell proliferation of microglial cell line BV2, while N-acetyl-l-cysteine (NAC), a scavenger of superoxide, prevented the cells from death, suggesting that cell death is induced by ROS.

View Article and Find Full Text PDF

Amyloid-beta (Abeta) is one of the main factors to cause Alzheimer's disease. Although fibrillar Abeta (fAbeta) activates microglial cells that release toxic compounds to induce partial neuronal death, the mechanism of interaction between Abeta and microglia remains unclear. Therefore, we examined the interaction of microglial cells (BV2) and fAbeta on a gelatin-precoated plate.

View Article and Find Full Text PDF

Brief treatment with transforming growth factor (TGF)-beta1 stimulated the migration of macrophages, whereas long-term exposure decreased their migration. Cell migration stimulated by TGF-beta1 was markedly inhibited by 10 mug/mL Tat-C3 exoenzyme. TGF-beta1 increased mRNA and protein levels of macrophage inflammatory protein (MIP)-1alpha in the initial period, and these effects also were inhibited by 10 mug/mL Tat-C3 and a dominant-negative (DN)-RhoA (N19RhoA).

View Article and Find Full Text PDF

Rac1 and Rac2 are essential for the control of oxidative burst catalyzed by NADPH oxidase. It was also documented that Rho is associated with the superoxide burst reaction during phagocytosis of serum- (SOZ) and IgG-opsonized zymosan particles (IOZ). In this study, we attempted to reveal the signal pathway components in the superoxide formation regulated by Rho GTPase.

View Article and Find Full Text PDF