Among the congener of dioxin, 2,3,7,8-TCDD is the most toxic, having a serious long-term impact on the environment and human health. UDP-glucuronosyltransferase 1A1 (UGT1A1) plays a crucial role in the detoxification and excretion of endogenous and exogenous lipophilic compounds, primarily in the liver and gastrointestinal tract. This study aimed to investigate the association of UGT1A1 gene polymorphisms, expression levels, and enzyme concentration with Agent Orange/Dioxin exposure.
View Article and Find Full Text PDFThe pathological outcome of dengue disease results from complex interactions between dengue virus (DENV) and host genetics and immune response. Complement receptor types 1 and 2 (CR1 and CR2) mediate complement activation through the alternative pathway. This study investigated the possible association of genetic polymorphisms and plasma levels of CR1 and CR2 with dengue disease.
View Article and Find Full Text PDF2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) is the most toxic congener of dioxin and has serious long-term effects on the environment and human health. Pyruvate Kinase L/R (PKLR) gene expression levels and gene variants are associated with pyruvate kinase enzyme deficiency, which has been identified as the cause of several diseases linked to dioxin exposure. In this study, we estimated PKLR gene copy number and gene expression levels using real-time quantitative PCR (RT-qPCR) assays, genotyped PKLR SNP rs3020781 by Sanger sequencing, and quantified plasma pyruvate kinase enzyme activity in 100 individuals exposed to Agent Orange/Dioxin near Bien Hoa and Da Nang airfields in Vietnam and 100 healthy controls.
View Article and Find Full Text PDFAim: The current study investigated the plasma levels of angiopoietin-1/-2 and their association with clinical outcomes of sepsis.
Methods: Angiopoietin-1 and -2 levels were quantified in plasma from 105 patients with severe sepsis by ELISA.
Results: Angiopoietin-2 levels elevated according to the severity of sepsis progression.
Haptic feedback in virtual reality-based trainers for surgical bone drilling is mostly provided via impedance-controlled haptic devices. Due to this, the displayable maximum stiffness is limited. In addition, vibration feedback is often only of reduced fidelity.
View Article and Find Full Text PDF