Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, accounting for 80%-85% of total cases and leading to millions of deaths worldwide. Drug resistance is the primary cause of treatment failure in NSCLC, which urges scientists to develop advanced approaches for NSCLC treatment. Among novel approaches, the miRNA-based method has emerged as a potential approach as it allows researchers to modulate target gene expression.
View Article and Find Full Text PDFCell Reprogram
December 2021
Umbilical cord-derived mesenchymal stem/stromal cells (UC-MSCs) are believed to have potential for the treatment of various diseases; thus, many scientists have investigated the molecular mechanisms underlying the function of UC-MSCs and, for example, the appropriate media for large-scale UC-MSC expansion to prepare cells for real-world application. In this study, we investigated the cellular morphology, proliferation capacity, surface markers, cellular senescence signals, clonogenic potential, trilineage differentiation capacity, and secreted factors of human primary UC-MSCs in long-term culture from passage 2 (P2) to passage 10 (P10) with either conventional fetal bovine serum (FBS)-supplemented medium or commercial xeno- and serum-free medium (StemMACS™). We found that the cells cultured in both media had similar morphology and marker expression.
View Article and Find Full Text PDF