Publications by authors named "Ha Manh Luu"

Purpose: Efficient compression of images while preserving image quality has the potential to be a major enabler of effective remote clinical diagnosis and treatment, since poor Internet connection conditions are often the primary constraint in such services. This paper presents a framework for organ-specific image compression for teleinterventions based on a deep learning approach and anisotropic diffusion filter.

Methods: The proposed method, deep learning and anisotropic diffusion (DLAD), uses a convolutional neural network architecture to extract a probability map for the organ of interest; this probability map guides an anisotropic diffusion filter that smooths the image except at the location of the organ of interest.

View Article and Find Full Text PDF

Multimodal image fusion for image guidance in minimally invasive liver interventions generally requires the registration of pre-operatively acquired images with interventional images of the patient. Whereas rigid registration approaches are fast and can be used in an interventional setting, the actual liver deformation may be nonrigid. The purpose of this paper is to assess the magnitude of nonrigid deformation of the liver between pre-operative and interventional CT images in the case of tumor ablations, over the full liver and over parts of the liver that match the volumes typically imaged by a 3D ultrasound transducer.

View Article and Find Full Text PDF

Objectives: To compare the accuracy of liver tumour localisation in intraprocedural computed tomography (CT) images of computer-based rigid registration or non-rigid registration versus mental registration performed by interventional radiologists.

Methods: Retrospectively (2009-2017), 35 contrast-enhanced CT (CECT) images incorporating 56 tumours, acquired during CT-guided ablation procedures and their corresponding pre-procedural diagnostic CECTs were retrieved from the picture archiving and communication system (PACS). The original intraprocedural CECTs were de-enhanced to create a virtually unenhanced CT image (VUCT).

View Article and Find Full Text PDF

CT-guided percutaneous ablation for liver cancer treatment is a relevant technique for patients not eligible for surgery and with tumors that are inconspicuous on US imaging. The lack of real-time imaging and the use of a limited amount of CT contrast agent make targeting the tumor with the needle challenging. In this study, we evaluate a registration framework that allows the integration of diagnostic pre-operative contrast enhanced CT images and intra-operative non-contrast enhanced CT images to improve image guidance in the intervention.

View Article and Find Full Text PDF

Purpose: In image-guided radio frequency ablation for liver cancer treatment, pre- and post-interventional CT images are typically used to verify the treatment success of the therapy. In current clinical practice, the tumor zone in the diagnostic, preinterventional images is mentally or manually mapped to the ablation zone in the post-interventional images to decide success of the treatment. However, liver deformation and differences in image quality as well as in texture of the ablation zone and the tumor area make the mental or manual registration a challenging task.

View Article and Find Full Text PDF

Liver vessel segmentation in CTA images is a challenging task, especially in the case of noisy images. This paper investigates whether pre-filtering improves liver vessel segmentation in 3D CTA images. We introduce a quantitative evaluation of several well-known filters based on a proposed liver vessel segmentation method on CTA images.

View Article and Find Full Text PDF