Publications by authors named "Ha Junhyoung"

Concentric Tube Robots (CTRs) have been proposed to operate within the unstructured environment for minimally invasive surgeries. In this letter, we consider the operation scenario where the tubes travel inside the channels with a large clearance or large curvature, such as aortas or industrial pipes. Accurate kinematic modeling of CTRs is required for the development of motion planning and control within these operation scenarios.

View Article and Find Full Text PDF

Motivation: Many organisms' survival and behavior hinge on their responses to environmental signals. While research on bacteria-directed therapeutic agents has increased, systematic exploration of real-time modulation of bacterial motility remains limited. Current studies often focus on permanent motility changes through genetic alterations, restricting the ability to modulate bacterial motility dynamically on a large scale.

View Article and Find Full Text PDF

An augmented reality (AR)-assisted surgical navigation system was developed for epidural needle intervention. The system includes three components: a virtual reality-based surgical planning software, a patient and tool tracking system, and an AR-based surgical navigation system. A three-dimensional (3D) path plan for the epidural needle was established on the preoperative computed tomography (CT) image.

View Article and Find Full Text PDF

Soft robots can provide advantages for medical interventions given their low cost and their ability to change shape and safely apply forces to tissue. This article explores the potential for their use for endoscopically-guided balloon dilation procedures in the airways. A scalable robot design based on balloon catheter technology is proposed, which is composed of five balloons together with a tip-mounted camera and LED.

View Article and Find Full Text PDF

We present a novel method to estimate the 3D pose and curvature of bendable interventional devices using a single X-ray image. A preliminary experiment was performed to demonstrate the feasibility of the proposed method. The mean estimation accuracies were 3.

View Article and Find Full Text PDF

Biological experiments for developing efficient cancer therapeutics require significant resources of time and costs particularly in acquiring biological image data. Thanks to recent advances in AI technologies, there have been active researches in generating realistic images by adapting artificial neural networks. Along the same lines, this paper proposes a learning-based method to generate images inheriting biological characteristics.

View Article and Find Full Text PDF

Objectives: We sought to demonstrate in an animal model that helical stents made from a nickel titanium alloy called nitinol (NiTi) and designed for malacic airways could be delivered and removed without significant trauma while minimally impeding mucus clearance during the period of implantation.

Methods: Stents were delivered and removed from the tracheas of healthy 20 kg swine (n = 5) using tools designed to minimize trauma. In 4-week experiments, the stents were implanted on day 0, removed after 3 weeks, and swine were put to death after 4 weeks.

View Article and Find Full Text PDF

This paper presents a novel continuum robot sheath for use in single-port minimally invasive procedures such as neuroendoscopy in which the sheath is designed to deliver multiple robotic arms. Articulation of the sheath is achieved by using precurved superelastic tubes lining the working channels used for arm delivery. These tubes perform a similar role to push/pull tendons, but can accomplish shape change of the sheath via rotation as well as translation.

View Article and Find Full Text PDF

Objective: The goal was to develop a pediatric airway stent for treating tracheobronchomalacia that could be used as an alternative to positive pressure ventilation. The design goals were for the stent to allow mucus flow and to resist migration inside the airways, while also enabling easy insertion and removal.

Methods: A helical stent design, together with insertion and removal tools, is presented.

View Article and Find Full Text PDF

The shape of a concentric tube robot depends not only on the relative rotations and translations of its constituent tubes, but also on the history of relative tube displacements. Existing mechanics-based models neglect all history-dependent phenomena with the result that when calibrated on experimental data collected over a robot's workspace, the maximum tip position error can exceed 8 mm for a 200-mm-long robot. In this paper, we develop a model that computes the bounding kinematic solutions in which Coulomb friction is acting either to maximize or minimize the relative twisting between each pair of contacting tubes.

View Article and Find Full Text PDF

Concentric tube robots experience elastic instability when the potential energy stored in torsional twisting of the tubes is suddenly released. To date, ensuring stability for all possible rotational configurations has involved constraining the precurvatures and/or precurved lengths of the tubes comprising the robot, which results in limitations on robot curvature and workspace. This paper presents a design approach that eliminates the constraints on tube precurvature and length for stable rotation.

View Article and Find Full Text PDF

Robotic instruments based on concentric tube technology are well suited to minimally invasive surgery since they are slender, can navigate inside small cavities and can reach around sensitive tissues by taking on shapes of varying curvature. Elastic instabilities can arise, however, when rotating one precurved tube inside another. In contrast to prior work that considered only tubes of piecewise constant precurvature, we allow precurvature to vary along the tube's arc length.

View Article and Find Full Text PDF

Although existing mechanics-based models of concentric tube robots have been experimentally demonstrated to approximate the actual kinematics, determining accurate estimates of model parameters remains difficult due to the complex relationship between the parameters and available measurements. Further, because the mechanics-based models neglect some phenomena like friction, nonlinear elasticity, and cross section deformation, it is also not clear if model error is due to model simplification or to parameter estimation errors. The parameters of the superelastic materials used in these robots can be slowly time-varying, necessitating periodic re-estimation.

View Article and Find Full Text PDF

Concentric tube robots, which are comprised of precurved elastic tubes that are concentrically arranged, are being developed for many medical interventions. The shape of the robot is determined by the rotation and translation of the tubes relative to each other, and also by any external forces applied by the environment. As the tubes rotate and translate relative to each other, elastic potential energy caused by tube bending and twisting can accumulate; if a configuration is not locally elastically stable, then a dangerous snapping motion may occur as energy is suddenly released.

View Article and Find Full Text PDF