SARS-CoV-2 mutations have resulted in the emergence of multiple concerning variants, with Omicron being the dominant strain presently. Therefore, we developed a monoclonal antibody (mAb) against the spike (S) protein of SARS-CoV-2 Omicron for therapeutic applications. We established the 1E3H12 mAb, recognizing the receptor binding domain (RBD) of the Omicron S protein, and found that the 1E3H12 mAb can efficiently recognize the Omicron S protein with weak affinity to the Alpha, Beta, and Mu variants, but not to the parental strain and Delta variant.
View Article and Find Full Text PDFOptimum genetic delivery for modulating target genes to diseased tissue is a major obstacle for profitable gene therapy. Lipid nanoparticles (LNPs), considered a prospective vehicle for nucleic acid delivery, have demonstrated efficacy in human use during the COVID-19 pandemic. This study introduces a novel biomaterial-based platform, M1-polarized macrophage-derived cellular nanovesicle-coated LNPs (M1-C-LNPs), specifically engineered for a combined gene-immunotherapy approach against solid tumor.
View Article and Find Full Text PDFPaxlovid is the first approved oral treatment for coronavirus disease 2019 and includes nirmatrelvir, a protease inhibitor targeting the main protease (M) of SARS-CoV-2, as one of the key components. While some specific mutations emerged in M were revealed to significantly reduce viral susceptibility to nirmatrelvir , there is no report regarding resistance to nirmatrelvir in patients and animal models for SARS-CoV-2 infection yet. We recently developed xenograft tumors derived from Calu-3 cells in immunodeficient mice and demonstrated extended replication of SARS-CoV-2 in the tumors.
View Article and Find Full Text PDFSARS-CoV-2 Omicron has the largest number of mutations among all the known SARS-CoV-2 variants. The presence of these mutations might explain why Omicron is more infectious and vaccines have lower efficacy to Omicron than other variants, despite lower virulence of Omicron. We recently established a long-term in vivo replication model by infecting Calu-3 xenograft tumors in immunodeficient mice with parental SARS-CoV-2 and found that various mutations occurred majorly in the spike protein during extended replication.
View Article and Find Full Text PDFWe recently established a long-term SARS-CoV-2 infection model using lung-cancer xenograft mice and identified mutations that arose in the SARS-CoV-2 genome during long-term propagation. Here, we applied our model to the SARS-CoV-2 Delta variant, which has increased transmissibility and immune escape compared with ancestral SARS-CoV-2. We observed limited mutations in SARS-CoV-2 Delta during long-term propagation, including two predominant mutations: R682W in the spike protein and L330W in the nucleocapsid protein.
View Article and Find Full Text PDFCancer immunotherapy, which harnesses the power of the immune system, has shown immense promise in the fight against malignancies. Messenger RNA (mRNA) stands as a versatile instrument in this context, with its capacity to encode tumor-associated antigens (TAAs), immune cell receptors, cytokines, and antibodies. Nevertheless, the inherent structural instability of mRNA requires the development of effective delivery systems.
View Article and Find Full Text PDFBreast cancer is the most common cancer and a frequent cause of cancer-related deaths among women wordlwide. As therapeutic strategies for breast cancer have limitations, novel chemotherapeutic reagents and treatment strategies are needed. In this study, we investigated the anti-cancer effect of synthetic homoisoflavane derivatives of cremastranone on breast cancer cells.
View Article and Find Full Text PDFCancer immunotherapy is a next-generation treatment strategy; however, its side effects limit its clinical translation. Here, a novel combination of a multi-functional nano-adjuvant (M-NA) prepared with an iron oxide/gold core and a cationic polymer shell via multilayer synthesis with CpG oligodeoxynucleotide (CpG-ODN) electrostatically complexed on its surface, and irreversible electroporation (IRE) technique was developed for effective image-guided in situ cancer vaccination. The M-NA can be retained long-term in the dense tumoral extracellular matrix after intratumoral injection and internalized by antigen-presenting cells (APCs).
View Article and Find Full Text PDFA reactive oxygen species (ROS) responsive cleavable hierarchical metallic supra-nanostructure (HMSN) is reported. HMSN structured with thin branches composed of primary gold (Au) nanocrystals and silver (Ag) nano-linkers is synthesized by a one-pot aqueous synthesis with a selected ratio of Au/Ag/cholate. ROS responsive degradability of HMSN is tested in the presence of endogenous and exogeneous ROS.
View Article and Find Full Text PDFColorectal cancer is diagnosed as the third most prevalent cancer; thus, effective therapeutic agents are urgently required. In this study, we synthesized six homoisoflavane derivatives of cremastranone and investigated their cytotoxic effects on the human colorectal cancer cell lines HCT116 and LoVo. We further examined the related mechanisms of action using two of the potent compounds, SH-19027 and SHA-035.
View Article and Find Full Text PDFHeat shock protein 90 (HSP90), one of the molecular chaperones, stabilizes several proteins necessary to maintain pluripotency of embryonic stem (ES) cells. Recently, we reported that HDAC inhibitors and proteasome inhibitors down-regulate HSP90 activity through HSP90 cleavage induced by reactive oxygen species (ROS) generation and caspase 10 activation in various cancer cells. In this study, we investigated HSP90 cleavage in mouse ES cells.
View Article and Find Full Text PDFNanozymes are nanomaterials with similar catalytic activities to natural enzymes. Compared with natural enzymes, they have numerous advantages, including higher physiochemical stability, versatility, and suitability for mass production. In the past decade, the synthesis of nanozymes and their catalytic mechanisms have advanced beyond the simple replacement of natural enzymes, allowing for fascinating applications in various fields such as biosensing and disease treatment.
View Article and Find Full Text PDFInflammation is associated with injury to immature lungs, and melatonin administration to preterm newborns with acute respiratory distress improves pulmonary outcomes. We hypothesized that maternally administered melatonin may reduce inflammation, oxidative stress, and structural injury in fetal lung and help fetal lung maturation in a mouse model of intrauterine inflammation (IUI). Mice were randomized to the following groups: control (C), melatonin (M), lipopolysaccharide (LPS; a model of IUI) (L), and LPS with melatonin (ML).
View Article and Find Full Text PDFBackround: CRISPR/Cpf1 is a class II, type V RNA-guided endonuclease that is distinct from the type II CRISPR/Cas9 nuclease, widely used for genome editing. Cpf1 is a smaller and simpler endonuclease than Cas9, overcoming some limitations of the CRISPR/Cas9 system. The applications of CRISPR to rodent embryos for the production of knock-out (KO) mice have been achieved mainly by microinjection, which requires heavily-equipped instruments with skillful hands.
View Article and Find Full Text PDF