The dehydrogenation of semiconducting boron carbide (B(10)C(2)H(x)) films as well as the three closo-carborane isomers of dicarbadodecaborane (C(2)B(10)H(12)) and two isomers of the corresponding closo-phosphacarborane (PCB(10)H(11)) all appear to be very similar. Photoionization mass spectrometry studies at near-threshold gas phase photoionization indicate that the preferred pathway for dissociation of the parent cation species (C(2)B(10)H(10)(+) or PCB(10)H(9)(+)) is, in all cases, the loss of H(2). Ab initio density functional theory (DFT) calculations indicate that energetically preferred sites for exopolyhedral hydrogen (B-H) bond dissociation are in all cases at B atoms opposite the C atoms in the parent cage molecule.
View Article and Find Full Text PDFA photoion mass spectrometry study of the prebiotic species formamide was carried out using synchrotron radiation over the photon energy range 10-20 eV. Photoion yield curves were measured for the parent ion and seven fragment ions. The ionization energy of formamide was determined as IE (1(2)A') = 10.
View Article and Find Full Text PDFPhotoionization mass spectrometry (PIMS) has been used to study the dissociative ionization of three anthropogenic atmospheric aerosol precursors (o-xylene, 2-methylstyrene, indene) and five of their main atmospheric degradation products (o-tolualdehyde, 2-methylphenol, o-toluic acid, phthalic acid, and phthaldialdehyde). Ionization and fragment appearance energies have been experimentally determined in the 7-15 eV photon energy regime. Moreover, intensive ab inito quantum chemical calculations have been performed to compute the first ionization energies and heats of formation of these compounds (including also phthalic anhydride).
View Article and Find Full Text PDFNH2 and NH transitions were identified in dispersed fluorescence spectra obtained by VUV excitation of NH3 at nine different energies between 8.266 and 15.498 eV.
View Article and Find Full Text PDF