Publications by authors named "HUMBERT G"

Biosensing plays a pivotal role in various scientific domains, offering significant contributions to medical diagnostics, environmental monitoring, and biotechnology. Fluorescence biosensing relies on the fluorescence emission from labelled biomolecules to enable sensitive and selective identification and quantification of specific biological targets in various samples. Photonic crystal fibers (PCFs) have led to the development of optofluidic fibers enabling efficient light-liquid interaction within small liquid volume.

View Article and Find Full Text PDF

Solid core photonic crystal fibers (SC-PCFs) have garnered attention as probes for surface-enhanced Raman spectroscopy (SERS) due to their potential as optofluidic devices, offering heightened sensitivity and reliability compared to traditional planar/colloidal nanoparticle-based SERS platforms. A smaller core allows for more light interaction but might compromise sensitivity and reliability due to reduced surface area for interaction. Here, we introduce an innovative SC-PCF design aimed at resolving the trade-off between increasing the evanescent field fraction and the core surface area.

View Article and Find Full Text PDF

Surface enhanced Raman spectroscopy (SERS) is one of the most sensitive biosensing techniques that offers label free detection for a variety of applications. Generally, SERS spectroscopy is performed on nano-functionalized planar substrates with plasmonic structures or colloidal nanoparticles. Recently, photonic crystal fibers (PCFs) have gained great interest for SERS based bio sensing applications due to the immense advantages such as improved sensitivity, flexibility and remote sensing capability that it offers compared to the planar substrates.

View Article and Find Full Text PDF

We report continuous measurements of the transmission spectrum of a fiber loop mirror interferometer composed of a Panda-type polarization-maintaining (PM) optical fiber during the diffusion of dihydrogen (H) gas into the fiber. Birefringence variation is measured through the wavelength shift of the interferometer spectrum when the PM fiber is inserted into a gas chamber with H concentration from 1.5 to 3.

View Article and Find Full Text PDF

Early diagnosis of oral cancer is critical to improve the survival rate of patients. Raman spectroscopy, a non-invasive spectroscopic technique, has shown potential in identifying early-stage oral cancer biomarkers in the oral cavity environment. However, inherently weak signals necessitate highly sensitive detectors, which restricts widespread usage due to high setup costs.

View Article and Find Full Text PDF

The detection for small molecules with low concentrations is known to be challenging for current chemical and biological sensors. In this work, we designed a highly sensitive plasmonic biosensor based on the symmetric metal cladding plasmonic waveguide (SMCW) structure for the detection of biomolecules. By precisely designing the configuration and tuning the thickness of the guiding layer, ultra-high order modes can be excited, which generates a steep phase change and a large position shift from the Goos−Hänchen effect (with respect to refractive index changes).

View Article and Find Full Text PDF

Growth of the lactic acid bacterium in milk depends on its capacity to hydrolyze proteins of this medium through its surface proteolytic activity. Thus, strains exhibiting the cell envelope proteinase (CEP) PrtS are able to grow in milk at high cellular density. Due to its LPNTG motif, which is possibly the substrate of the sortase A (SrtA), PrtS is anchored to the cell wall in most strains.

View Article and Find Full Text PDF

In various studies, the introduction of infant formulas during the stay in the maternity ward has been shown to increase the risk of breastfeeding failure and the development of cow's milk protein allergy. How can they be avoided when the infant loses weight in an "abnormal" way? A team from the Polyclinique Majorelle, in Nancy, studied the impact of the mode of delivery on the weight of the newborn in order to improve its accompaniment while respecting the real needs and rhythms of each child.

View Article and Find Full Text PDF

A zero-reflection-induced phase singularity is achieved through precisely controlling the resonance characteristics using two-dimensional nanomaterials. An atomically thin nano-layer having a high absorption coefficient is exploited to enhance the zero-reflection dip, which has led to the subsequent phase singularity and thus a giant lateral position shift. We have improved the detection limit of low molecular weight molecules by more than three orders of magnitude compared to current state-of-art nanomaterial-enhanced plasmonic sensors.

View Article and Find Full Text PDF

Polarization-maintaining fibers (PMFs) have always received great attention in fiber optic communication systems and components which are sensitive to polarization. Moreover, they are widely applied for high-accuracy detection and sensing devices, such as fiber gyroscope, electric/magnetic sensors, multi-parameter sensors, and so on. Here, we demonstrated the combination of a fiber Bragg grating (FBG) and Sagnac interference in the same section of a new type of PANDA-structure PMF for the simultaneous measurement of axial strain and temperature.

View Article and Find Full Text PDF

Recently, surface enhanced Raman spectroscopy (SERS)-active photonic crystal fiber (PCFs) probes have gained great interest for biosensing applications due to the tremendous advantages it has over the conventional planar substrate based SERS measurements, with improvements on the detection sensitivity and reliability in measurements. So far, two main approaches were employed to get the analyte molecule in the vicinity of nanoparticles (NPs) inside PCFs in order to achieve the SERS effect. In the first case, analyte and NPs are pre-mixed and injected inside the holes of the PCF prior to the measurement.

View Article and Find Full Text PDF

Recent progress in optical fiber Mach-Zehnder interferometers (MZIs) has gained many achievements in sensing application. However, the strain sensitivity of optical fiber MZIs is low due to the low elasto-optical coefficient of silica. In this Letter, we propose and demonstrate a method to modulate the guided modes in an MZI based on a special hollow core microstructured optical fiber (HCMOF) by fabricating periodical deformations.

View Article and Find Full Text PDF

Background: The Biological Field Station of Paimpont (Station Biologique de Paimpont, SBP), owned by the University of Rennes and located in the Brocéliande Forest of Brittany (France), has been hosting student scientific research and field trips during the last 60 years. The study area of the SBP is a landscape mosaic of 17 ha composed of gorse moors, forests, prairies, ponds and creeks. Land use has evolved over time.

View Article and Find Full Text PDF

Developments toward the implementation of a terahertz pulse imaging system within a guided reflectometry configuration are reported. Two photoconductive antennas patterned on the same LT-GaAs active layer in association with a silica pipe hollow-core waveguide allowed us to obtain a guided optics-free imager. Besides working in a pulsed regime, the setup does not require additional optics to focus and couple the terahertz pulses into the waveguide core, simplifying the global implementation in comparison with other reported guided terahertz reflectometry systems.

View Article and Find Full Text PDF

The performance of sensors, including optical fiber sensors, is commonly limited by the tradeoff between a large dynamic range and a high resolution. In this Letter, in order to optimize both, we propose an inline multimode interferometer sensor based on a suspended-core microstructured optical fiber. Due to the existence of multiple pairs of mode interferences, the transmission spectrum of the interferometer consists of dense fringes modulated by a lower envelope.

View Article and Find Full Text PDF

Conventionally Surface-enhanced Raman spectroscopy (SERS) is realized by adsorbing analytes onto nano-roughened planar substrate coated with noble metals (silver or gold) or their colloidal nanoparticles (NPs). Nanoscale irregularities in such substrates/NPs could lead to SERS sensors with poor reproducibility and repeatability. Herein, we demonstrate a suspended core photonic crystal fiber (PCF) based SERS sensor with extremely high reproducibility and repeatability in measurement with a relative SD of only 1.

View Article and Find Full Text PDF

Recent progress in designing optimized microstructured optical fiber spreads an application scenario of optical fiber sensing. Here, we investigate the bending measurement based on a specially designed hollow core photonic crystal fiber (HC-PCF). Numerical simulation indicates that the bending sensitivity is mainly determined by the diameter of the hollow core and also depends on the coupled modes.

View Article and Find Full Text PDF

We demonstrate a widely tunable Q-switched dual-wavelength fiber laser emitting synchronized pulses in the 2 μm spectral range. Owing to the use of a Tm-doped rod-type fully aperiodic large pitch fiber, together with an acousto-optic modulator and two volume Bragg gratings (VBGs), the wavelength separation was shown to be continuously tunable from 1 to 120 nm (∼0.1-10  THz).

View Article and Find Full Text PDF

The tremendous enhancement factors that surface-enhanced Raman scattering (SERS) possesses coupled with the flexibility of photonic crystal fibers (PCFs) pave the way to a new generation of ultrasensitive biosensors. Thanks to the unique structure of PCFs, which allows direct incorporation of an analyte into the axially aligned air channels, interaction between the analyte and excitation light could be increased many folds leading to flexible, reliable and sensitive probes that can be used in preclinical or clinical biosensing. SERS-active PCF probes provide unique opportunity to develop an opto-fluidic liquid biopsy needle sensor that enables one-step integrated sample collection and testing for disease diagnosis.

View Article and Find Full Text PDF

Despite their promising thermo-physical properties for direct solar absorption, carbon-based nanocolloids present some drawbacks, among which the unpleasant property of being potentially cytotoxic and harmful to the environment. In this work, a sustainable, stable and inexpensive colloid based on coffee is synthesized and its photo-thermal properties investigated. The proposed colloid consists of distilled water, Arabica coffee, glycerol and copper sulphate, which provide enhanced properties along with biocompatibility.

View Article and Find Full Text PDF

New experimental techniques, as well as modern variants on known methods, have recently been employed to investigate the fundamental reactions underlying the oxidation of biochar. The purpose of this paper was to experimentally and statistically study how the relative humidity of air, mass, and particle size of four biochars influenced the adsorption of water and the increase in temperature. A random factorial design was employed using the intuitive statistical software Xlstat.

View Article and Find Full Text PDF

All-in-fiber optofluidics is an analytical tool that provides enhanced sensing performance with simplified analyzing system design. Currently, its advance is limited either by complicated liquid manipulation and light injection configuration or by low sensitivity resulting from inadequate light-matter interaction. In this work, we design and fabricate a side-channel photonic crystal fiber (SC-PCF) and exploit its versatile sensing capabilities in in-line optofluidic configurations.

View Article and Find Full Text PDF

Broadband modulation of terahertz (THz) light is experimentally realized through the electrically driven metal-insulator phase transition of vanadium dioxide (VO) in hybrid metal antenna-VO devices. The devices consist of VO active layers and bowtie antenna arrays, such that the electrically driven phase transition can be realized by applying an external voltage between adjacent metal wires extended to a large area array. The modulation depth of the terahertz light can be initially enhanced by the metal wires on top of VO and then improved through the addition of specific bowties in between the wires.

View Article and Find Full Text PDF

This paper presents the state of the art distributed sensing systems, based on optical fibres, developed and qualified for the French Cigéo project, the underground repository for high level and intermediate level long-lived radioactive wastes. Four main parameters, namely strain, temperature, radiation and hydrogen concentration are currently investigated by optical fibre sensors, as well as the tolerances of selected technologies to the unique constraints of the Cigéo's severe environment. Using fluorine-doped silica optical fibre surrounded by a carbon layer and polyimide coating, it is possible to exploit its Raman, Brillouin and Rayleigh scattering signatures to achieve the distributed sensing of the temperature and the strain inside the repository cells of radioactive wastes.

View Article and Find Full Text PDF

In agricultural landscapes, establishment of vegetated buffer zones in riparian wetlands (RWs) is promoted to decrease phosphorus (P) emissions because RWs can trap particulate P from upslope fields. However, long-term accumulation of P risks the release of dissolved P, since the unstable hydrological conditions in these zones may mobilize accumulated particulate P by transforming it into a mobile dissolved P species. This study evaluates how hydroclimate variability, topography and soil properties interact and influence this mobilization, using a three-year dataset of molybdate-reactive dissolved P (MRDP) and total dissolved P (TDP) concentrations in soil water from two RWs located in an agricultural catchment in western France (Kervidy-Naizin), along with stream P concentrations.

View Article and Find Full Text PDF