Publications by authors named "HUB M"

The accuracy of elastic image registration is limited. We propose an approach to detect voxels where registration based on the demons algorithm is likely to perform inaccurately, compared to other locations of the same image. The approach is based on the assumption that the local reproducibility of the registration can be regarded as a measure of uncertainty of the image registration.

View Article and Find Full Text PDF

Radiotherapy is a fast-developing discipline which plays a major role in cancer care. Quantitative analysis of radiotherapy data can improve the success of the treatment and support the prediction of outcome. In this paper, we first identify functional, conceptional and general requirements on a software system for quantitative analysis of radiotherapy.

View Article and Find Full Text PDF

A method for quantitative visualization of the uncertainty in the predicted tumor control probability (TCP) and normal tissue complication probability (NTCP) in radiotherapy has been developed. Uncertainties of TCP and NTCP due to inter-individual variation of the underlying radiosensitivity parameters was simulated by sampling the prescribed dose from a uniform distribution and the radiosensitivity-parameters from a Gaussian distribution. The result is visualized as a scatter-plot superimposed to the population-based dose response curves using the prescribed dose as the common dosimetric variable.

View Article and Find Full Text PDF

Purpose: In fractionated radiation therapy, image guidance with daily tomographic imaging becomes more and more clinical routine. In principle, this allows for daily computation of the delivered dose and for accumulation of these daily dose distributions to determine the actually delivered total dose to the patient. However, uncertainties in the mapping of the images can translate into errors of the accumulated total dose, depending on the dose gradient.

View Article and Find Full Text PDF

Uncertainties in image registration may be a significant source of errors in anatomy mapping as well as dose accumulation in radiotherapy. It is, therefore, essential to validate the accuracy of image registration. Here, we propose a method to detect areas where mono modal B-spline registration performs well and to distinguish those from areas of the same image, where the registration is likely to be less accurate.

View Article and Find Full Text PDF

The looming potential of deformable alignment tools to play an integral role in adaptive radiotherapy suggests a need for objective assessment of these complex algorithms. Previous studies in this area are based on the ability of alignment to reproduce analytically generated deformations applied to sample image data, or use of contours or bifurcations as ground truth for evaluation of alignment accuracy. In this study, a deformable phantom was embedded with 48 small plastic markers, placed in regions varying from high contrast to roughly uniform regional intensity, and small to large regional discontinuities in movement.

View Article and Find Full Text PDF

The purpose of this study was to investigate the feasibility of a simple deformable phantom as a QA tool for testing and validation of deformable image registration algorithms. A diagnostic thoracic imaging phantom with a deformable foam insert was used in this study. Small plastic markers were distributed through the foam to create a lattice with a measurable deformation as the ground truth data for all comparisons.

View Article and Find Full Text PDF

To analyze the repositioning accuracy in female patients with breast carcinoma, two different setups of an image-subtraction system (Positioning System FIVE) were devised using different numbers and alignments of lasers. The applicability of the system was tested for repositioning of the breast in normal volunteers. Horizontal translations as well as breathing-related movements in the vertical direction were measured.

View Article and Find Full Text PDF

The importance of exact patient positioning in radiation therapy increases with the ongoing improvements in irradiation planning and treatment. Therefore, new ways to overcome precision limitations of current positioning methods in fractionated treatment have to be found. The Department of Medical Physics at the German Cancer Research Centre (DKFZ) follows different video-based approaches to increase repositioning precision.

View Article and Find Full Text PDF