We show how the elastic response of metallic nano-cavities can be tailored by tuning the interplay with an underlying phononic superlattice. In particular, we exploit ultrafast optical excitation in order to address a resonance mode in a tungsten thin film, grown on top of a periodic MgO/ZrO multilayer. Setting up a simple theoretical model, we can explain our findings by the coupling of the resonance in the tungsten to an evanescent surface mode of the superlattice.
View Article and Find Full Text PDFThis article describes holographic imaging experiments using a hard X-ray multilayer zone plate (MZP) with an outermost zone width of 10 nm at a photon energy of 18 keV. An order-sorting aperture (OSA) is omitted and emulated during data analysis by a 'software OSA'. Scanning transmission X-ray microscopy usually carried out in the focal plane is generalized to the holographic regime.
View Article and Find Full Text PDFCompound optics such as lens systems can overcome the limitations concerning resolution, efficiency, or aberrations which fabrication constraints would impose on any single optical element. In this work we demonstrate unprecedented sub-5 nm point focusing of hard x-rays, based on the combination of a high gain Kirkpatrick-Baez (KB) mirror system and a high resolution W/Si multilayer zone plate (MZP) for ultra-short focal length f. The pre-focusing allows limiting the MZP radius to below 2 μm, compatible with the required 5 nm structure width and essentially unlimited aspect ratios, provided by enabling fabrication technology based on pulsed laser deposition (PLD) and focused ion beam (FIB).
View Article and Find Full Text PDFX-ray diffractive techniques using Fresnel zone plate lenses of various forms are of great technical interest because of their ability to form images at very high spatial resolution, but the zone plates are unfortunately very hard to produce by lithography. Alternatively, multilayer Laue lenses (MLLs) and multilayer zone plates are used due to the higher and easily adjustable aspect ratio necessary for different wavelengths. In this paper, the fabrication of a MLL by a combination of pulsed laser deposition and focused ion beam machining is described.
View Article and Find Full Text PDFAlloy-ceramic oxide multilayers of Ni(80)Nb(20)- MgO with 3.56-nm period have been made by use of the pulsed-laser deposition technique and characterized by means of grazing-incidence x-ray reflectivity. The interface roughness was found to be only ~0.
View Article and Find Full Text PDFMetal/MgO multilayers (metal of Fe, Ni80Nb20, and Ti) with bilayer periods in the range 1.2-3.0 nm have been prepared by pulsed laser deposition and characterized by both hard and soft-x-ray reflectometry.
View Article and Find Full Text PDFThe crossover in kinetic roughening of thin films from a particle-character-dominated regime to continuous growth behavior has been observed in this work. This has been accomplished by atomic force microscopy investigations of pulsed laser deposited amorphous organic films with thicknesses ranging from several nanometers to more than 4 microm. The early-stage random-deposition-like processes end once a closed layer is formed, which grows without saturation on the characteristic length scales.
View Article and Find Full Text PDFNi80Nb20-MgO multilayers with d spacing that varies from 2.50 to 3.07 nm were prepared by pulsed laser deposition under conditions of ultrahigh vacuum (UHV) and argon.
View Article and Find Full Text PDFPhys Rev B Condens Matter
April 1987