Theor Biol Med Model
August 2006
Background: Murray's Law states that, when a parent blood vessel branches into daughter vessels, the cube of the radius of the parent vessel is equal to the sum of the cubes of the radii of daughter blood vessels. Murray derived this law by defining a cost function that is the sum of the energy cost of the blood in a vessel and the energy cost of pumping blood through the vessel. The cost is minimized when vessel radii are consistent with Murray's Law.
View Article and Find Full Text PDFWe present a simple model for the arterial part of the cardiovascular system, based on Poiseuille flow constrained by the power dissipated into the cells lining the vessels. This, together with the assumption of a volume-filling network, leads to correct predictions for the evolution of vessel radii, vessel lengths and blood pressure in the human arterial system. The model can also be used to find exponents for allometric scaling, and gives good agreement with data on mammals.
View Article and Find Full Text PDF