The International Monitoring System (IMS) is a unique global network of sensors, tuned to measure various phenomenology, with the common goal of detecting a nuclear explosion anywhere in the world. One component of this network collects measurements of radioactive particulates and gases (collectively known as radionuclides) present in the atmosphere; through this, compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT) can be verified. The radionuclide sub-network consists of 120 sensors across 80 locations, supported by 16 measurement laboratories.
View Article and Find Full Text PDFDesign of an efficient monitoring network requires information on the type and size of releases to be detected, the accuracy and reliability of the measuring equipment, and the desired network performance. This work provides a scientific basis for optimizing or minimizing networks of Xe samplers to achieve a desired performance level for different levels of release. The approach of this work varies the density of sampling locations to find optimal location subsets, and to explore the properties of variations of those subsets - how crucial is a specific subset; are substitutions problematic? The choice of possible station locations is arbitrary but constrained to some extent by the location of islands, land masses, difficult topography (mountains, etc.
View Article and Find Full Text PDFJ Environ Radioact
February 2023
In 1995, the development of a global radioactive xenon monitoring network was discussed in the Conference on Disarmament as part of a nuclear explosion verification regime. Discussions considered different network densities and different possible source magnitudes. The Comprehensive Nuclear Test Ban Treaty was subsequently written to initially include 40 locations for noble gas (radioxenon) samplers, and to consider using a total of 80 locations for noble gas samplers in its International Monitoring System (IMS) after the treaty enters into force.
View Article and Find Full Text PDFJ Environ Radioact
October 2022
Next-generation radioxenon monitoring systems are reaching maturity and are expected to improve certain aspects of performance in verifying the absence of nuclear tests. To predict the improvement in detecting and locating nuclear test releases, thousands of releases all over the globe were simulated and the global detection probability was calculated for the single xenon isotope Xe. This was done for the International Monitoring System network of noble gas samplers as it currently exists (25 certified stations), and how it would be for potential future network sizes of 39 and 79 stations.
View Article and Find Full Text PDFSince about 2000 (Bowyer et al., 1998), radioxenon monitoring systems have been under development and testing for the verification of the Comprehensive Nuclear Test-Ban Treaty (CTBT). Operation of the systems since then has resulted in development of a next-generation of systems that are nearly ready for operational deployment.
View Article and Find Full Text PDFPredicting source or background radionuclide emissions is limited by the effort needed to run gas/aerosol atmospheric transport models (ATMs). A high-performance surrogate model is developed for the HYSPLIT4 (NOAA) ATM to accelerate transport simulation through model reduction, code optimization, and improved scaling on high performance computing systems. The surrogate model parameters are a grid of short-duration transport simulations stored offline.
View Article and Find Full Text PDFJ Environ Radioact
January 2022
Large networks producing frequent atmospheric radionuclide measurements have additional power in characterizing and localizing radionuclide release events over the analysis performed with four or fewer radionuclide measurements. However, adding unrelated measurements to an analysis dilutes that advantage, unless source-term models are extended to account for this complexity. A key steppingstone to obtaining network power is to select a group of related sample measurements that are associated with a release event.
View Article and Find Full Text PDFA Bayesian source-term algorithm recently published by Eslinger et al. (2019) extended previous models by including the ability to discriminate between classes of releases such as nuclear explosions, nuclear power plants, or medical isotope production facilities when multiple isotopes are measured. Using 20 release cases from a synthetic data set previously published by Haas et al.
View Article and Find Full Text PDFJ Environ Radioact
November 2019
Pacific Northwest National Laboratory (PNNL) staff developed the Radionuclide Aerosol Sampler Analyzer (RASA) for worldwide aerosol monitoring in the 1990s. Recently, researchers at PNNL and Creare, LLC, have investigated possibilities for how RASA could be improved, based on lessons learned from more than 15 years of continuous operation, including during the Fukushima Daiichi Nuclear Power Plant disaster. Key themes addressed in upgrade possibilities include having a modular approach to additional radionuclide measurements, optimizing the sampling/analyzing times to improve detection location capabilities, and reducing power consumption by using electrostatic collection versus classic filtration collection.
View Article and Find Full Text PDFAlgorithms that estimate the location and magnitude of an atmospheric release using remotely sampled air concentrations typically involve a single chemical or radioactive isotope. A new Bayesian algorithm is presented that makes discrimination between possible types of releases (e.g.
View Article and Find Full Text PDFThe Majorana Collaboration is operating an array of high purity Ge detectors to search for neutrinoless double-β decay in ^{76}Ge. The Majorana Demonstrator comprises 44.1 kg of Ge detectors (29.
View Article and Find Full Text PDFThe International Monitoring System of the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) uses a global network of radionuclide monitoring stations to detect evidence of a nuclear explosion. The two radionuclide technologies employed-particulate and noble gas (radioxenon) detection-have applications for data fusion to improve detection of a nuclear explosion. Using the hypothetical 0.
View Article and Find Full Text PDFThe Comprehensive Nuclear-Test-Ban Treaty bans all nuclear tests and mandates development of verification measures to detect treaty violations. One verification measure is detection of radioactive xenon isotopes produced in the fission of actinides. The International Monitoring System (IMS) currently deploys automated radioxenon systems that can detect four radioxenon isotopes.
View Article and Find Full Text PDFAs the world faces a challenging future in maintaining the commercial availability of radioactive isotopes for medical use, new methods of medical isotope production are being pursued. Many of these are small in size and could effectively operate continuously. With the potential for much shorter retention times, a new suite of isotopes may soon be found in the environment.
View Article and Find Full Text PDFPNNL has developed two low-background gamma-ray spectrometers in a new shallow underground laboratory, thereby significantly improving its ability to detect low levels of gamma-ray emitting fission or activation products in airborne particulate in samples from the IMS (International Monitoring System). The combination of cosmic veto panels, dry nitrogen gas to reduce radon and low background shielding results in a reduction of the background count rate by about a factor of 100 compared to detectors operating above ground at our laboratory.
View Article and Find Full Text PDFIn 2014 the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) undertook an Integrated Field Exercise (IFE14) in Jordan. The exercise consisted of a simulated 0.5-2 kT underground nuclear explosion triggering an On-site Inspection (OSI) to search for evidence of a Treaty violation.
View Article and Find Full Text PDFArgon-37 is an environmental signature of an underground nuclear explosion. Producing and quantifying low-level (37)Ar standards is an important step in the development of sensitive field measurement instruments. This paper describes progress at Pacific Northwest National Laboratory in developing a process to generate and quantify low-level (37)Ar standards, which can be used to calibrate sensitive field systems at activities consistent with soil background levels.
View Article and Find Full Text PDFThe radionuclide network of the International Monitoring System comprises up to 80 stations around the world that have aerosol and xenon monitoring systems designed to detect releases of radioactive materials to the atmosphere from nuclear explosions. A rule of thumb description of plume concentration and duration versus time and distance from the release point is useful when designing and deploying new sample collection systems. This paper uses plume development from atmospheric transport modeling to provide a power-law rule describing atmospheric dilution factors as a function of distance from the release point.
View Article and Find Full Text PDFBATAN Teknologi (BaTek) operates an isotope production facility in Serpong, Indonesia that supplies (99m)Tc for use in medical procedures. Atmospheric releases of (133)Xe in the production process at BaTek are known to influence the measurements taken at the closest stations of the radionuclide network of the International Monitoring System (IMS). The purpose of the IMS is to detect evidence of nuclear explosions, including atmospheric releases of radionuclides.
View Article and Find Full Text PDFThe International Monitoring System (IMS) of the Comprehensive-Nuclear-Test-Ban-Treaty monitors the atmosphere for radioactive xenon leaking from underground nuclear explosions. Emissions from medical isotope production represent a challenging background signal when determining whether measured radioxenon in the atmosphere is associated with a nuclear explosion prohibited by the treaty. The Australian Nuclear Science and Technology Organisation (ANSTO) operates a reactor and medical isotope production facility in Lucas Heights, Australia.
View Article and Find Full Text PDFThe monitoring of the radioactive xenon isotopes (131m)Xe, (133)Xe, (133m)Xe, and (135)Xe is important for the detection of nuclear explosions. While backgrounds of the xenon isotopes are short-lived, they are constantly replenished from activities dominated by the fission-based production of (99)Mo used for medical procedures. At present, one of the most critical locations on earth for the monitoring of nuclear explosions is the Korean peninsula where the Democratic People's Republic of Korea (DPRK) has announced that it conducted three nuclear tests between 2006 and 2013.
View Article and Find Full Text PDFSystems designed to monitor airborne radionuclides released from underground nuclear explosions detected radioactive fallout across the northern hemisphere resulting from the Fukushima Dai-ichi Nuclear Power Plant accident in March 2011. Sampling data from multiple International Modeling System locations are combined with atmospheric transport modeling to estimate the magnitude and time sequence of releases of (133)Xe. Modeled dilution factors at five different detection locations were combined with 57 atmospheric concentration measurements of (133)Xe taken from March 18 to March 23 to estimate the source term.
View Article and Find Full Text PDFWe report the final results of the Phase II SIMPLE measurements, comprising two run stages of 15 superheated droplet detectors each, with the second stage including an improved neutron shielding. The analyses include a refined signal analysis, and revised nucleation efficiency based on a reanalysis of previously reported monochromatic neutron irradiations. The combined results yield a contour minimum of σp=5.
View Article and Find Full Text PDFFission gases such as (133)Xe are used extensively for monitoring the world for signs of nuclear testing in systems such as the International Monitoring System (IMS). These gases are also produced by nuclear reactors and by fission production of (99)Mo for medical use. Recently, medical isotope production facilities have been identified as the major contributor to the background of radioactive xenon isotopes (radioxenon) in the atmosphere (Stocki et al.
View Article and Find Full Text PDF