We report on a microscopic study of the noncentrosymmetric superconductor WAlC (with= 7.6 K), mostly by means ofAl- andC nuclear magnetic resonance (NMR). Since in this material the density of states at the Fermi level is dominated by the tungsten's 5orbitals, we expect a sizeable spin-orbit coupling (SOC) effect.
View Article and Find Full Text PDFAlthough the frustrated (zigzag) spin chain is the Drosophila of frustrated magnetism, our understanding of a pair of coupled zigzag chains (frustrated spin ladder) in a magnetic field is still lacking. We address this problem through nuclear magnetic resonance (NMR) experiments on BiCu[Formula: see text]PO[Formula: see text] in magnetic fields up to 45 T, revealing a field-induced spiral magnetic structure. Conjointly, we present advanced numerical calculations showing that even a moderate rung coupling dramatically simplifies the phase diagram below half-saturation magnetization by stabilizing a field-induced chiral phase.
View Article and Find Full Text PDFThe investigation of materials under extreme pressure conditions requires high-performance cells whose design invariably involves trade-offs between the maximum achievable pressure, the allowed sample volume, and the possibility of real-time pressure monitoring. With a newly conceived hybrid piston-clamped anvil cell, we offer a relatively simple and versatile system, suitable for nuclear magnetic resonance experiments up to 4.4 GPa.
View Article and Find Full Text PDFUnlike the widely studied ReFeAsO series, the newly discovered iron-based superconductor ThFeAsN exhibits a remarkably high critical temperature of 30 K, without chemical doping or external pressure. Here we investigate in detail its magnetic and superconducting properties via muon-spin rotation/relaxation and nuclear magnetic resonance techniques and show that ThFeAsN exhibits strong magnetic fluctuations, suppressed below ~35 K, but no magnetic order. This contrasts strongly with the ReFeAsO series, where stoichiometric parent materials order antiferromagnetically and superconductivity appears only upon doping.
View Article and Find Full Text PDFRev Sci Instrum
September 2014
We report on the design and implementation of a new digital, broad-band nuclear magnetic resonance (NMR) spectrometer suitable for probing condensed matter. The spectrometer uses direct sampling in both transmission and reception. It relies on a single, commercially-available signal processing device with a user-accessible field-programmable gate array (FPGA).
View Article and Find Full Text PDFWe report the observation of a stepwise "melting" of the low-temperature Na-vacancy order in the layered transition-metal oxide Na0.7CoO2. High-resolution neutron powder diffraction analysis indicates the existence of two first-order structural transitions, one at T1≈290 K followed by a second at T2≈400 K.
View Article and Find Full Text PDFBased on high-field (31)P nuclear magnetic resonance experiments and accompanying numerical calculations, it is argued that in the frustrated S=1/2 ladder compound BiCu(2)PO(6) a field-induced soliton lattice develops above a critical field of μ(0)H(c1)=20.96(7) T. Solitons result from the fractionalization of the S=1, bosonlike triplet excitations, which in other quantum antiferromagnets are commonly known to experience Bose-Einstein condensation or to crystallize in a superstructure.
View Article and Find Full Text PDFWe report on the construction of a two-axis goniometer intended for low-temperature, single-crystal nuclear magnetic resonance (NMR) measurements. With the use of home-made and commercially available parts, our simple probe-head design achieves good sensitivity, while maintaining a high angular precision and the ability to orient samples also when cooled to liquid helium temperatures. The probe with the goniometer is adapted to be inserted into a commercial (4)He-flow cryostat, which fits into a wide-bore superconducting solenoid magnet.
View Article and Find Full Text PDFNMR measurements of the (29)Si spin-lattice relaxation time T(1) were used to probe the spin-1/2 random Heisenberg chain compound BaCu(2)(Si(1-x)Ge(x))(2)O(7). Remarkable differences between the pure (x=0) and the fully random (x=0.5) cases are observed, indicating that randomness generates a distribution of local magnetic relaxations.
View Article and Find Full Text PDFNuclear magnetic resonance and magnetization measurements were used to probe the magnetic features of single-crystalline Bi(Cu(1-x)Zn(x))(2)PO(6) with 0
Data of 23Na NMR spectra and relaxation measurements are interpreted as suggesting that, upon increasing temperature, the Na layers in Na0.8CoO2 adopt a 2D liquid state at T=291 K. The corresponding first order phase transition is preceded by a rapidly increasing mobility and diffusion of Na ions above 200 K.
View Article and Find Full Text PDFSubstituting Eu by Ca in ferromagnetic EuB6 leads to a percolation limited magnetic ordering. We present and discuss magneto-optical data of the Eu(1-x)Ca(x)B6 series, based on measurements of the reflectivity R(omega) from the far infrared up to the ultraviolet, as a function of temperature and magnetic field. Via the Kramers-Kronig transformation of R(omega) we extract the complete absorption spectra of samples with different values of x.
View Article and Find Full Text PDFUpon substituting Ca for Eu in the local-moment ferromagnet EuB6, the Curie temperature T(C) decreases substantially with increasing dilution of the magnetic sublattice and is completely suppressed for x
Phys Rev Lett
February 2004
We have measured the optical reflectivity R(omega) of Eu0.6Ca0.4B6 as a function of temperature (T) between 1.
View Article and Find Full Text PDFThe thermal conductivity kappa in the basal plane of single-crystalline hexagonal NbSe2 has been measured as a function of magnetic field H, oriented both along and perpendicular to the c axis, at several temperatures below T(c). With the magnetic field in the basal plane and oriented parallel to the heat flux we observed, in fields well below H(c2), an unexpected hysteretic behavior of kappa(H) with all the generic features of a first order phase transition. The transition is not manifest in the kappa(H) curves, if H is still in the basal plane but oriented perpendicularly to the heat-flux direction.
View Article and Find Full Text PDFWe report the results of measurements of the dc susceptibility and the 23Na-NMR response of Na2V3O7, a recently synthesized, nonmetallic low dimensional spin system. Our results indicate that, upon reducing the temperature to below 100 K, the V4+ moments are gradually quenched, leaving only one moment out of nine active. The NMR data reveal a phase transition at very low temperatures.
View Article and Find Full Text PDFThe thermal conductivity of the spin-1/2 ladder system Sr14-xCaxCu24O41 ( x = 0, 2, and 12) has been measured both along ( kappa(c)) and perpendicular to ( kappa(a)) the ladder direction at temperatures between 5 and 300 K. While the temperature dependence of kappa(a) is typical for phonon heat transport, an unusual double-peak structure is observed for kappa(c)(T). We interpret this unexpected feature as a manifestation of quasi-one-dimensional magnon thermal transport mediated by spin excitations along the ladders.
View Article and Find Full Text PDFWe report the results of 7Li nuclear magnetic resonance (NMR) studies of LiVGe2O6, a quasi-one-dimensional spin S = 1 model system, at low temperatures. Our data, including NMR spectra and the temperature dependence of the spin-lattice relaxation rate T-11, indicate that a first-order phase transition occurs at T(c) approximately 23 K. The NMR response of LiVGe2O6 below T(c) suggests that the ordered phase is antiferromagnetic and has unusual features.
View Article and Find Full Text PDFWe report on measurements of the differential conductivity G of UBe13-Au contacts, which reveal the existence of low-energy Andreev surface bound states. These bound states are identified via huge conductance peaks at zero bias that may form only in superconductors with nontrivial energy-gap functions. From the voltage dependence of G at T
The magnetic properties of the ground state of a low-density free-electron gas in three dimensions have been the subject of theoretical speculation and controversy for seven decades. Not only is this a difficult theoretical problem to solve, it is also a problem which has not hitherto been directly addressed experimentally. Here we report measurements on electron-doped calcium hexaboride (CaB) which, we argue, show that-at a density of 7× 1019 electrons cm-3-the ground state is ferromagnetically polarized with a saturation moment of 0.
View Article and Find Full Text PDFPhys Rev B Condens Matter
November 1996