Several exploratory studies have demonstrated the feasibility of cholecystokinin-2 receptor (CCK2R) targeting in patients with medullary thyroid carcinoma (MTC) and other neuroendocrine tumors (NETs). We report the results of a prospective phase I/IIA pilot study (clinicaltrials.gov NCT06155994) conducted at our center with the Ga-labeled peptide analog DOTA-DGlu-Ala-Tyr-Gly-Trp-(N-Me)Nle-Asp-1-Nal-Phe-NH (Ga-DOTA-MGS5).
View Article and Find Full Text PDFPurpose: Radiolabelled minigastrin (MG) analogues targeting the cholecystokinin-2 receptor (CCK2R) have proven to be a promising approach for peptide receptor radionuclide therapy (PRRT). In this study, we report on the radiopharmaceutical development and standardization of the preparation of [Lu]Lu-DOTA-MGS5 using an automated synthesis module. Furthermore, we present the preclinical tests required to move forward towards a first therapeutic clinical trial as well as preliminary clinical dosimetry data.
View Article and Find Full Text PDF[Ga]Ga-FAP-2286 is a new peptide-based radiopharmaceutical for positron-emission tomography (PET) that targets fibroblast activation protein (FAP). This article describes in detail the automated synthesis of [Ga]Ga-FAP-2286 using a commercially available synthesis tool that includes quality control for routine clinical applications. The synthesis was performed using a Scintomics GRP-3V module and a GMP grade Ge/Ga generator.
View Article and Find Full Text PDFDuring neural tube (NT) development, the notochord induces an organizer, the floorplate, which secretes Sonic Hedgehog (SHH) to pattern neural progenitors. Conversely, NT organoids (NTOs) from embryonic stem cells (ESCs) spontaneously form floorplates without the notochord, demonstrating that stem cells can self-organize without embryonic inducers. Here, we investigated floorplate self-organization in clonal mouse NTOs.
View Article and Find Full Text PDFBackground: PET/CT imaging of glucagon-like peptide receptor 1 has recently filled a gap in reliably diagnosing insulinoma through non-invasive means. Ga-labelled derivatives of exendin-4 show high sensitivity as well as sufficient serum stability to enable routine clinical application. Here, we provide data for automated production of [Ga][Nle,Lys(Ahx-DOTA-Ga)NH]exendin-4 ([Ga]Ga-DOTA-exendin-4) on a cassette based synthesis module (Modular-Lab PharmTracer, Eckert & Ziegler) using commercially available cassettes in combination with an approved Ge/Ga generator (GalliaPharm, Eckert & Ziegler).
View Article and Find Full Text PDFLoss-of-function genetic tools are widely applied for validating therapeutic targets, but their utility remains limited by incomplete on- and uncontrolled off-target effects. We describe artificial RNA interference (ARTi) based on synthetic, ultra-potent, off-target-free shRNAs that enable efficient and inducible suppression of any gene upon introduction of a synthetic target sequence into non-coding transcript regions. ARTi establishes a scalable loss-of-function tool with full control over on- and off-target effects.
View Article and Find Full Text PDFThe mixed surfactant system of tetradecyldimethylamine oxide (TDMAO) and lithium perfluorooctanoate (LiPFO) is known to spontaneously self-assemble into well-defined small unilamellar vesicles. For a quantitative analysis of small-angle x-ray scattering on this model system, we complemented the measurements with densitometry, conductimetry, and contrast-variation small-angle neutron scattering. The analysis points to two main findings: first, the vesicles formed to contain a much higher mole fraction (0.
View Article and Find Full Text PDFDifferent attempts have been made in the past two decades to develop radiolabeled peptide conjugates with enhanced pharmacokinetic properties in order to improve the application for tumor imaging and peptide receptor radionuclide therapy (PRRT), which targets the cholecystokinin-2 receptor (CCK2R). In this paper, the influence of different side chain and peptide bond modifications has been explored for the minigastrin analog DOTA-DGlu-Ala-Tyr-Gly-Trp-(-Me)Nle-Asp-1Nal-NH (DOTA-MGS5). Based on this lead structure, five new derivatives were synthesized for radiolabeling with trivalent radiometals.
View Article and Find Full Text PDFBroad availability and cost-effectiveness of Mo/Tc generators worldwide support the use, and thus the development, of novel Tc-labelled radiopharmaceuticals. In recent years, preclinical and clinical developments for neuroendocrine neoplasms patient management focused on somatostatin receptor subtype 2 (SST) antagonists, mainly due to their superiority in SST-tumour targeting and improved diagnostic sensitivity over agonists. The goal of this work was to provide a reliable method for facile preparation of a Tc-labelled SST antagonist, [Tc]Tc-TECANT-1, in a hospital radiopharmacy setting, suitable for a multi-centre clinical trial.
View Article and Find Full Text PDFThe therapeutic potential of minigastrin (MG) analogs for the treatment of cholecystokinin-2 receptor (CCK2R)-expressing cancers is limited by poor in vivo stability or unfavorable accumulation in non-target tissues. Increased stability against metabolic degradation was achieved by modifying the C-terminal receptor-specific region. This modification led to significantly improved tumor targeting properties.
View Article and Find Full Text PDFOncogenic alterations in human epidermal growth factor receptor 2 (HER2) occur in approximately 2% of patients with non-small cell lung cancer and predominantly affect the tyrosine kinase domain and cluster in exon 20 of the ERBB2 gene. Most clinical-grade tyrosine kinase inhibitors are limited by either insufficient selectivity against wild-type (WT) epidermal growth factor receptor (EGFR), which is a major cause of dose-limiting toxicity or by potency against HER2 exon 20 mutant variants. Here we report the discovery of covalent tyrosine kinase inhibitors that potently inhibit HER2 exon 20 mutants while sparing WT EGFR, which reduce tumor cell survival and proliferation in vitro and result in regressions in preclinical xenograft models of HER2 exon 20 mutant non-small cell lung cancer, concomitant with inhibition of downstream HER2 signaling.
View Article and Find Full Text PDFGenetic networks are characterized by extensive buffering. During tumor evolution, disruption of functional redundancies can create de novo vulnerabilities that are specific to cancer cells. Here, we systematically search for cancer-relevant paralog interactions using CRISPR screens and publicly available loss-of-function datasets.
View Article and Find Full Text PDFThe new minigastrin analog DOTA-MGS8 targeting the cholecystokinin-2 receptor (CCK2R) used in this study displays the combination of two site-specific modifications within the C-terminal receptor binding sequence together with an additional N-terminal amino acid substitution preventing fast metabolic degradation. Within this study, the preparation of Ga-labeled DOTA-MGS8 was validated using an automated synthesis module, describing the specifications and analytical methods for quality control for possible clinical use. In addition, preclinical studies were carried out to characterize the targeting potential.
View Article and Find Full Text PDFDerivatives of the cytotoxic cyclooxygenase (COX) inhibitor [(prop-2-ynyl)-2-acetoxybenzoate]dicobalthexacarbonyl (Co-ASS) with a methyl group in the 3, 4, 5, or 6 position of the acetylsalicylic acid (ASS) scaffold were synthesized with the aim to achieve enhanced selectivity for COX-2. From this modification, a higher specificity for COX-2-expressing tumors is expected, preventing COX-1-mediated side effects. The cobalt-alkyne complexes were tested for their COX-inhibitory and antiproliferative properties as well as their cellular uptake.
View Article and Find Full Text PDFThe new minigastrin analog DOTA-MGS5 is a promising new candidate for targeting cholecystokinin-2 receptor (CCK2R)-expressing tumors. To enable the clinical translation of PET/CT imaging using Ga-labeled DOTA-MGS5, different quality and safety aspects need to be considered to comply with the regulatory framework for clinical trial application. The preparation of the radiopharmaceutical was established using a cassette-based automated synthesis unit.
View Article and Find Full Text PDFA new sample environment is introduced for the study of soft matter samples in electric fields using small-angle neutron scattering instruments. The sample environment is temperature controlled and features external electrodes, allowing standard quartz cuvettes to be used and conducting samples or samples containing ions to be investigated without the risk of electrochemical reactions occurring at the electrodes. For standard 12.
View Article and Find Full Text PDFNanoparticles (NPs) have great potential for biological applications as typically they exhibit strongly size-dependent properties. Specifically, the interaction of NPs with phospholipid membranes is significantly relevant to nanomedicine and the related field of nanotoxicology. Therefore, the investigation of interactions of NPs with model membranes is not only fundamentally important but also practically valuable to understand interactions of NPs with more complex cell membranes.
View Article and Find Full Text PDFAntifungal resistance of human fungal pathogens represents an increasing challenge in modern medicine. Short antimicrobial peptides (AMP) display a promising class of antifungals with a different mode of action, but lack target specificity and metabolic stability. In this study the hexapeptide PAF26 (Ac-dArg-dLys-dLys-dTrp-dPhe-dTrp-NH2) and the three amino acid long peptide NLF (H2N-Asn-Leu-dPhe-COOH) were coupled to diacetylfusarinine C (DAFC), a derivative of the siderophore triacetylfusarinine C (TAFC) of , to achieve targeted delivery for treatment of invasive aspergillosis.
View Article and Find Full Text PDFMinigastrin (MG) analogues, known for their high potential to target cholecystokinin-2 receptor (CCK2R) expressing tumors, have limited clinical applicability due to low enzymatic stability. By introducing site-specific substitutions within the C-terminal receptor-binding sequence, reduced metabolization and improved tumor targeting can be achieved. In this work, the influence of additional modification within the N-terminal sequence has been explored.
View Article and Find Full Text PDFTargeting of cholecystokinin-2 receptor (CCK2R) expressing tumors using radiolabeled minigastrin (MG) analogs is hampered by rapid digestion of the linear peptide in vivo. In this study, a new MG analog stabilized against enzymatic degradation was investigated in preclinical studies to characterize the metabolites formed in vivo. The new MG analog DOTA-DGlu-Pro-Tyr-Gly-Trp-(-Me)Nle-Asp-1Nal-NH comprising site-specific amino acid substitutions in position 2, 6 and 8 and different possible metabolites thereof were synthesized.
View Article and Find Full Text PDFA wide variety of radiolabeled peptide analogs for specific targeting of cholecystokinin- 2 receptors (CCK2R) has been developed in the last decades. Peptide probes based on the natural ligands Minigastrin (MG) and Cholecystokinin (CCK) have a high potential for molecular imaging and targeted radiotherapy of different human tumors, such as Medullary Thyroid Carcinoma (MTC) and Small Cell Lung Cancer (SCLC). MG analogs with high persistent uptake in CCK2R expressing tumors have been preferably used for the development of radiolabeled peptide analogs.
View Article and Find Full Text PDFGenotype specific vulnerabilities of cancer cells constitute a promising strategy for the development of new therapeutics. Deletions of non-essential genes in tumors can generate unique vulnerabilities which could be exploited therapeutically. The gene is recurrently deleted in human cancers because of its chromosomal proximity to the tumor suppressor gene .
View Article and Find Full Text PDFNanoemulsions (NEs) are metastable emulsions with droplet sizes between 20 and 100 nm and with a wide range of applications, for example, in polymerization, in pharmaceutical and cosmetic formulations, and as drug delivery systems. Even though they are not in thermodynamic equilibrium, they can be metastable over relatively long times and have the advantage that they can be formed easily by low energy input methods. In particular, the phase inversion concentration (PIC) method allows the formation of NEs by the dilution of a suitable mixture of oil and surfactants with water.
View Article and Find Full Text PDF