We present first experimental results showing that single dust particles on a dielectric surface are mobilized and lofted due to exposure to an electron beam or ultraviolet radiation. It is shown that secondary electrons and/or photoelectrons emitted from a substrate surface are recollected on the surfaces within microcavities between a dust particle and the substrate surface, resulting in large negative charges and subsequently causing mobilization of the dust particle due to Coulomb repulsion. Dust mobility tested against the electron beam energy is shown to follow the secondary electron yield curve of the substrate surface in both the experimental and modeling results.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
May 2024
A detailed overview of the knowledge gaps in our understanding of the heliospheric interaction with the largely unexplored Very Local Interstellar Medium (VLISM) are provided along with predictions of with the scientific discoveries that await. The new measurements required to make progress in this expanding frontier of space physics are discussed and include in-situ plasma and pick-up ion measurements throughout the heliosheath, direct sampling of the VLISM properties such as elemental and isotopic composition, densities, flows, and temperatures of neutral gas, dust and plasma, and remote energetic neutral atom (ENA) and Lyman-alpha (LYA) imaging from vantage points that can uniquely discern the heliospheric shape and bring new information on the interaction with interstellar hydrogen. The implementation of a pragmatic Interstellar Probe mission with a nominal design life to reach 375 Astronomical Units (au) with likely operation out to 550 au are reported as a result of a 4-year NASA funded mission study.
View Article and Find Full Text PDFWe present a study of surface dust mobilization due to photoelectric charging in the presence of a magnetic field. Dust mobilization is observed to be inhibited in certain regions and is correlated with the orientation of the magnetic field. The recent patched charge model, which describes a mechanism for dust charging and mobilization, is extended to explain the effects of magnetic fields seen in our laboratory results.
View Article and Find Full Text PDFCharge sensitive amplifiers (CSAs) are electronic integrating circuits frequently used for detecting quick charge pulses such as those produced in semiconductor detector devices and electron multipliers. One of the limitations of highly sensitive CSA circuits is the accuracy with which they can be calibrated due to the necessity of using injection capacitors on the order of a few pF, which are difficult to calibrate and to disentangle from other stray capacitance in calibration circuits. This paper presents an alternate method for calibrating the electronics for CSAs with conductive detectors, referred to as the "external conductor" method, using the detector itself to form the injection circuit.
View Article and Find Full Text PDFMeteorit Planet Sci
September 2019
Given the compositional diversity of asteroids, and their distribution in space, it is impossible to consider returning samples from each one to establish their origin. However, the velocity and molecular composition of primary minerals, hydrated silicates, and organic materials can be determined by in situ dust detector instruments. Such instruments could sample the cloud of micrometer-scale particles shed by asteroids to provide direct links to known meteorite groups without returning the samples to terrestrial laboratories.
View Article and Find Full Text PDFPermanently polarized Polyvinylidene Fluoride (PVDF) films have been used on a variety of spacecraft as in situ dust detectors to measure the size and spatial distributions of micron and sub-micron dust particles. The detectors produce a short electric pulse when impacted by a hypervelocity dust particle. The pulse amplitude depends on the mass and relative speed of the dust grain.
View Article and Find Full Text PDFThe Cold Classical Kuiper Belt, a class of small bodies in undisturbed orbits beyond Neptune, is composed of primitive objects preserving information about Solar System formation. In January 2019, the New Horizons spacecraft flew past one of these objects, the 36-kilometer-long contact binary (486958) Arrokoth (provisional designation 2014 MU). Images from the flyby show that Arrokoth has no detectable rings, and no satellites (larger than 180 meters in diameter) within a radius of 8000 kilometers.
View Article and Find Full Text PDFThe outer Solar System object (486958) Arrokoth (provisional designation 2014 MU) has been largely undisturbed since its formation. We studied its surface composition using data collected by the New Horizons spacecraft. Methanol ice is present along with organic material, which may have formed through irradiation of simple molecules.
View Article and Find Full Text PDFWhen a weakly outgassing comet is sufficiently close to the Sun, the formation of an ionized coma results in solar wind mass loading and magnetic field draping around its nucleus. Using a 3D fully kinetic approach, we distill the components of a generalized Ohm's law and the effective electron equation of state directly from the self-consistently simulated electron dynamics and identify the driving physics in the various regions of the cometary plasma environment. Using the example of space plasmas, in particular multispecies cometary plasmas, we show how the description for the complex kinetic electron dynamics can be simplified through a simple effective closure, and identify where an isotropic single-electron fluid Ohm's law approximation can be used, and where it fails.
View Article and Find Full Text PDFPluto energies of a few kiloelectron volts and suprathermal ions with tens of kiloelectron volts and above. We measure this population using the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument on board the New Horizons spacecraft that flew by Pluto in 2015. Even though the measured ions have gyroradii larger than the size of Pluto and the cross section of its magnetosphere, we find that the boundary of the magnetosphere is depleting the energetic ion intensities by about an order of magnitude close to Pluto.
View Article and Find Full Text PDFThe Kuiper Belt is a distant region of the outer Solar System. On 1 January 2019, the New Horizons spacecraft flew close to (486958) 2014 MU, a cold classical Kuiper Belt object approximately 30 kilometers in diameter. Such objects have never been substantially heated by the Sun and are therefore well preserved since their formation.
View Article and Find Full Text PDFSaturn's main rings are composed of >95% water ice, and the nature of the remaining few percent has remained unclear. The Cassini spacecraft's traversals between Saturn and its innermost D ring allowed its cosmic dust analyzer (CDA) to collect material released from the main rings and to characterize the ring material infall into Saturn. We report the direct in situ detection of material from Saturn's dense rings by the CDA impact mass spectrometer.
View Article and Find Full Text PDFElectrostatic dust transport has been hypothesized to explain a number of observations of unusual planetary phenomena. Here, it is demonstrated using three recently developed experiments in which dust particles are exposed to thermal plasma with beam electrons, beam electrons only, or ultraviolet (UV) radiation only. The UV light source has a narrow bandwidth in wavelength centered at 172 nm.
View Article and Find Full Text PDFThe Lunar Dust Experiment (LDEX) onboard the mission orbited the Moon from 2013 October to 2014 April and detected impact ejecta generated by the continual bombardment of meteoroids to the lunar surface. While the Moon transited the Geminid meteoroid stream, LDEX observed a large enhancement in the lunar impact ejecta cloud, particularly above the portion of lunar surface normal to the Geminids radiant. Here, we present the LDEX measurements during the Geminids, using the surface density of impact ejecta at the Moon as a proxy for meteoroid activity.
View Article and Find Full Text PDFThe Colorado Solar Wind Experiment is a new device constructed at the Institute for Modeling Plasma, Atmospheres, and Cosmic Dust at the University of Colorado. A large cross-sectional Kaufman ion source is used to create steady state plasma flow to model the solar wind in an experimental vacuum chamber. The plasma beam has a diameter of 12 cm at the source, ion energies of up to 1 keV, and ion flows of up to 0.
View Article and Find Full Text PDFUsing a 3D fully kinetic approach, we disentangle and explain the ion and electron dynamics of the solar wind interaction with a weakly outgassing comet. We show that, to first order, the dynamical interaction is representative of a four-fluid coupled system. We self-consistently simulate and identify the origin of the warm and suprathermal electron distributions observed by ESA's Rosetta mission to comet 67P/Churyumov-Gerasimenko and conclude that a detailed kinetic treatment of the electron dynamics is critical to fully capture the complex physics of mass-loading plasmas.
View Article and Find Full Text PDFA facility has been developed to simulate the ablation of micrometeoroids in laboratory conditions. An electrostatic dust accelerator is used to generate iron particles with velocities of 10-70 km/s. The particles are then introduced into a chamber pressurized with a target gas, where the pressure is adjustable between 0.
View Article and Find Full Text PDFThe New Horizons spacecraft carried three instruments that measured the space environment near Pluto as it flew by on 14 July 2015. The Solar Wind Around Pluto (SWAP) instrument revealed an interaction region confined sunward of Pluto to within about 6 Pluto radii. The region's surprisingly small size is consistent with a reduced atmospheric escape rate, as well as a particularly high solar wind flux.
View Article and Find Full Text PDFIce is prevalent throughout the solar system and beyond. Though the evolution of many of these icy surfaces is highly dependent on associated micrometeoroid impact phenomena, experimental investigation of these impacts has been extremely limited, especially at the impactor speeds encountered in space. The dust accelerator facility at the Institute for Modeling Plasmas, Atmospheres, and Cosmic Dust (IMPACT) of NASA's Solar System Exploration Research Virtual Institute has developed a novel cryogenic system that will facilitate future study of hypervelocity impacts into ice and icy regolith.
View Article and Find Full Text PDFDust is common close to the martian surface, but no known process can lift appreciable concentrations of particles to altitudes above ~150 kilometers. We present observations of dust at altitudes ranging from 150 to above 1000 kilometers by the Langmuir Probe and Wave instrument on the Mars Atmosphere and Volatile Evolution spacecraft. Based on its distribution, we interpret this dust to be interplanetary in origin.
View Article and Find Full Text PDFThe Pluto system was recently explored by NASA's New Horizons spacecraft, making closest approach on 14 July 2015. Pluto's surface displays diverse landforms, terrain ages, albedos, colors, and composition gradients. Evidence is found for a water-ice crust, geologically young surface units, surface ice convection, wind streaks, volatile transport, and glacial flow.
View Article and Find Full Text PDFInterplanetary dust particles hit the surfaces of airless bodies in the Solar System, generating charged and neutral gas clouds, as well as secondary ejecta dust particles. Gravitationally bound ejecta clouds that form dust exospheres were recognized by in situ dust instruments around the icy moons of Jupiter and Saturn, but have hitherto not been observed near bodies with refractory regolith surfaces. High-altitude Apollo 15 and 17 observations of a 'horizon glow' indicated a putative population of high-density small dust particles near the lunar terminators, although later orbital observations yielded upper limits on the abundance of such particles that were a factor of about 10(4) lower than that necessary to produce the Apollo results.
View Article and Find Full Text PDFDetection of sodium-salt-rich ice grains emitted from the plume of the Saturnian moon Enceladus suggests that the grains formed as frozen droplets from a liquid water reservoir that is, or has been, in contact with rock. Gravitational field measurements suggest a regional south polar subsurface ocean of about 10 kilometres thickness located beneath an ice crust 30 to 40 kilometres thick. These findings imply rock-water interactions in regions surrounding the core of Enceladus.
View Article and Find Full Text PDFWe present the first three-dimensional fully kinetic and electromagnetic simulations of the solar wind interaction with lunar crustal magnetic anomalies (LMAs). Using the implicit particle-in-cell code iPic3D, we confirm that LMAs may indeed be strong enough to stand off the solar wind from directly impacting the lunar surface forming a mini-magnetosphere, as suggested by spacecraft observations and theory. In contrast to earlier magnetohydrodynamics and hybrid simulations, the fully kinetic nature of iPic3D allows us to investigate the space charge effects and in particular the electron dynamics dominating the near-surface lunar plasma environment.
View Article and Find Full Text PDF