Publications by authors named "HOMMA M"

In recent years, as one of the effects of global warming and heat island phenomenon, the risk of heat stroke in daily life is increasing. The worst heat wave in our history attacked in 2010, which killed more than 1,700 people. Therefore, the Japanese Government, including the Ministry of the Environment, has promoted the following measures: (1) Provision of information about prediction and observation of temperature and warning of hot weather (2) Awareness-raising of preventive measures appropriate to the heat stroke (3) Dissemination of information on the occurrence of heat stroke, e.

View Article and Find Full Text PDF

Introduction: When a large-scale disaster occurs, it is necessary to use the available resources in a variety of sites and scenes as efficiently as possible. To conduct such operations efficiently, it is necessary to deploy limited resources to the places where they will be the most effective. In this study, emergency and medical response activities that occurred following the Chuetsuoki Earthquake in Japan were analyzed to assess the most efficient and effective activities.

View Article and Find Full Text PDF

Photoactive proteins with cognate chromophores are widespread in organisms, and function as light-energy converters or receptors for light-signal transduction. Rhodopsins, which have retinal (vitamin A aldehyde) as their chromophore within their seven transmembrane α-helices, are classified into two groups, microbial (type-1) and animal (type-2) rhodopsins. In general, light absorption by type-1 or type-2 rhodopsins triggers a trans-cis or cis-trans isomerization of the retinal, respectively, initiating their photochemical reactions.

View Article and Find Full Text PDF

Light is one of the most important energy sources and signals providing critical information to biological systems. The photoreceptor rhodopsin, which possesses retinal chromophore (vitamin A aldehyde) surrounded by seven transmembrane alpha-helices, is widely dispersed in prokaryotes and in eukaryotes. Although rhodopsin molecules work as distinctly different photoreceptors, they can be divided according to their two basic functions such as light-energy conversion and light-signal transduction.

View Article and Find Full Text PDF

The polar flagellar motor of Vibrio alginolyticus rotates using Na(+) influx through the stator, which is composed of 2 subunits, PomA and PomB. About a dozen stators dynamically assemble around the rotor, depending on the Na(+) concentration in the surrounding environment. The motor torque is generated by the interaction between the cytoplasmic domain of PomA and the C-terminal region of FliG, a component of the rotor.

View Article and Find Full Text PDF

In this paper, single cells adhesion force was measured using a nanofork. The nanofork was used to pick up a single cell on a line array substrate inside an environmental scanning electron microscope (ESEM). The line array substrate was used to provide small gaps between the single cells and the substrate.

View Article and Find Full Text PDF

Cell-surface adhesion force is important for cell activities and the development of bio materials. In this paper, a method for in situ single cell (W303) adhesion force measurement was proposed based on nanorobotic manipulation system inside an environment scanning electron microscope (ESEM). An end effector was fabricated from a commercial atomic force microscope (AFM) cantilever by focused ion beam (FIB) etching.

View Article and Find Full Text PDF

Aim:   Activated hepatic stellate cells (HSC) play a critical role in liver fibrosis. Suppressing abnormal function of HSC or reversion from activated to quiescent form is a hopeful treatment for liver cirrhosis. The interaction between platelets and HSC remains unknown although platelets go through hepatic sinusoids surrounded by HSC.

View Article and Find Full Text PDF

The torque of the bacterial flagellar motor is generated by the rotor-stator interaction coupled with specific ion translocation through the stator channel. To produce a fully functional motor, multiple stator units must be properly incorporated around the rotor by an as yet unknown mechanism to engage the rotor-stator interactions. Here, we investigated stator assembly using a mutational approach of the Na(+)-driven polar flagellar motor of Vibrio alginolyticus, whose stator is localized at the flagellated cell pole.

View Article and Find Full Text PDF

Escherichia coli has closely related amino acid chemoreceptors with distinct ligand specificity, Tar for l-aspartate and Tsr for l-serine. Crystallography of the ligand-binding domain of Tar identified the residues interacting with aspartate, most of which are conserved in Tsr. However, swapping of the nonconserved residues between Tsr and Tar did not change ligand specificity.

View Article and Find Full Text PDF

The Na(+) -driven bacterial flagellar motor is a molecular machine powered by an electrochemical potential gradient of sodium ions across the cytoplasmic membrane. The marine bacterium Vibrio alginolyticus has a single polar flagellum that enables it to swim in liquid. The flagellar motor contains a basal body and a stator complexes, which are composed of several proteins.

View Article and Find Full Text PDF

The polar flagellum of is driven by sodium ion flux via a stator complex, composed of PomA and PomB, across the cell membrane. The interaction between PomA and the rotor component FliG is believed to generate torque required for flagellar rotation. Previous research reported that a GFP-fused FliG retained function in the flagellar motor.

View Article and Find Full Text PDF

To construct a simple model of a cellular system equipped with motor proteins, cell-sized giant liposomes encapsulating various amounts of actoHMM, the complexes of actin filaments (F-actin) and heavy meromyosin (HMM, an actin-related molecular motor), with a depletion reagent to mimic the crowding effect of inside of living cell, were prepared. We adapted the methodology of the spontaneous transfer of water-in-oil (W/O) droplets through a phospholipid monolayer into the bulk aqueous phase and successfully prepared stable giant liposomes encapsulating the solution with a physiological salt concentration containing the desired concentrations of actoHMM, which had been almost impossible to obtain using currently adapted methodologies such as natural swelling and electro-formation on an electrode. We then examined the effect of ATP on the cytoskeleton components confined in those cell-sized liposomes, because ATP is known to drive the sliding motion for actoHMM.

View Article and Find Full Text PDF

A novel method for measuring an adhesion force of single yeast cell is proposed based on a nanorobotic manipulation system inside an environmental scanning electron microscope (ESEM). The effect of ambient humidity on a single yeast cell adhesion force was studied. Ambient humidity was controlled by adjusting the chamber pressure and temperature inside the ESEM.

View Article and Find Full Text PDF

A novel nanoknife with a buffering beam is proposed for single-cell cutting. The nanoknife was fabricated from a commercial atomic force microscopy (AFM) cantilever by focused-ion-beam (FIB) etching technique. The material identification of the nanoknife was determined using the energy dispersion spectrometry (EDS) method.

View Article and Find Full Text PDF

The bacterial flagellar motor is driven by an ion flux through a channel called MotAB in Escherichia coli or Salmonella and PomAB in Vibrio alginolyticus. PomAB is composed of two transmembrane (TM) components, PomA and PomB, and converts a sodium ion flux to rotation of the flagellum. Its homolog, MotAB, utilizes protons instead of sodium ions.

View Article and Find Full Text PDF

Bacterial flagellar motors exploit the electrochemical potential gradient of a coupling ion (H(+) or Na(+)) as their energy source, and are composed of stator and rotor proteins. Sodium-driven and proton-driven motors have the stator proteins PomA and PomB or MotA and MotB, respectively, which interact with each other in their transmembrane (TM) regions to form an ion channel. The single TM region of PomB or MotB, which forms the ion-conduction pathway together with TM3 and TM4 of PomA or MotA, respectively, has a highly conserved aspartate residue that is the ion binding site and is essential for rotation.

View Article and Find Full Text PDF

A Glu139Asp mutant of the NtpK subunit (kE139D) of Enterococcus hirae vacuolar-type ATPase (V-ATPase) lost tolerance to sodium but not to lithium at pH 10. Purified kE139D V-ATPase retained relatively high specific activity and affinity for the lithium ion compared to the sodium ion. The kE139 residue of V-ATPase is indispensable for its enzymatic activity that is linked with the salt tolerance of enterococci.

View Article and Find Full Text PDF

The stator proteins PomA and PomB form a complex that couples Na(+) influx to torque generation in the polar flagellar motor of Vibrio alginolyticus. This stator complex is anchored to an appropriate place around the rotor through a putative peptidoglycan-binding (PGB) domain in the periplasmic region of PomB (PomB(C)). To investigate the function of PomB(C), a series of N-terminally-truncated and in-frame mutants with deletions between the transmembrane (TM) segment and the PGB domain of PomB was constructed.

View Article and Find Full Text PDF

Organisms sense and respond to environmental stimuli through membrane-embedded receptors and transducers. Sensory rhodopsin I (SRI) and sensory rhodopsin II (SRII) are the photoreceptors for the positive and negative phototaxis in microorganisms, respectively. They form signaling complexes in the membrane with their cognate transducer proteins, HtrI and HtrII, and these SRI-HtrI and SRII-HtrII complexes transmit a light signal through their cytoplasmic sensory signaling system, inducing opposite effects (i.

View Article and Find Full Text PDF

Torsades de pointes (TdP) is a fatal polymorphic ventricular tachyarrhythmia that is related to QTc prolongation. Takotsubo cardiomyopathy (TCM) is characterized by acute transient left ventricular dysfunction without obstructive coronary artery disease. The QTc interval is always prolonged in TCM; however, TdP is rarely reported in patients with TCM.

View Article and Find Full Text PDF

Cell's adhesion is important to cell's interaction and activates. In this paper, a novel method for cell-cell adhesion force measurement was proposed by using a nano-picker. The effect of the contact time on the cell-cell adhesion force was studied.

View Article and Find Full Text PDF

Salinibacter sensory rhodopsin I (SrSRI) is a microbial rhodopsin discovered from the eubacterium Salinibacter ruber . It is thought to be a photoreceptor engaging the signal transductions for both positive and negative phototaxis. To elucidate the photoreactions of SrSRI in the presence and absence of chloride ions, we measured the refractive index change after the photoexcitation by the transient grating method.

View Article and Find Full Text PDF

Sensory rhodopsin II (SRII) is a negative phototaxis receptor containing retinal as its chromophore, which mediates the avoidance of blue light. The signal transduction is initiated by the photoisomerization of the retinal chromophore, resulting in conformational changes of the protein which are transmitted to a transducer protein. To gain insight into the SRII sensing mechanism, we employed time-resolved ultraviolet resonance Raman spectroscopy monitoring changes in the protein structure in the picosecond time range following photoisomerization.

View Article and Find Full Text PDF