The Ge/Si(001) system has been analysed by grazing-incidence X-ray diffraction on a standard laboratory X-ray diffraction tool. A periodic array of interfacial edge dislocations forms a coincidence site lattice (CSL) which yields equidistantly spaced satellite peaks close to Bragg peaks of the Ge layer and Si substrate. The diffraction behaviour of the CSL was analysed using 2θ/φ scans along [100], [110] and [310] directions as well as azimuthal φ scans which revealed a 90° angular symmetry of the CSL.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
February 2019
The influence of growth conditions on the layer orientation, domain structure and crystal structure of gadolinium oxide (GdO) on silicon (001) has been investigated. GdO was grown at low (250°C) and high (850°C) temperatures with different oxygen partial pressure as well as a temperature ramp up during growth. At low temperature, the cubic bixbyite type of crystal structure with space group Ia{\bar 3} was grown at low oxygen partial pressure.
View Article and Find Full Text PDFCompressively strained Ge films have been grown on relaxed SiGe virtual substrates using molecular beam epitaxy in the presence of Sb as a surfactant. Structural characterization has shown that films grown in the presence of surfactant exhibit very smooth surfaces with a relatively higher strain value in comparison to those grown without any surfactant. The variation of strain with increasing Ge layer thickness was analyzed using Raman spectroscopy.
View Article and Find Full Text PDFSi and Si(1-x)Ge(x) quantum dots embedded within epitaxial Gd2O3 grown by molecular beam epitaxy have been studied for application in floating gate memory devices. The effect of interface traps and the role of quantum dots on the memory properties have been studied using frequency-dependent capacitance-voltage and conductance-voltage measurements. Multilayer quantum dot memory comprising four and five layers of Si quantum dots exhibits a superior memory window to that of single-layer quantum dot memory devices.
View Article and Find Full Text PDFThis work documents the first example of deposition of high-quality Gd(2)O(3) thin films in a surface-controlled, self-limiting manner by a water-based atomic layer deposition (ALD) process using the engineered homoleptic gadolinium guanidinate precursor [Gd(DPDMG)(3)]. The potential of this class of compound is demonstrated in terms of a true ALD process, exhibiting pronounced growth rates, a high-quality interface between the film and the substrate without the need for any additional surface treatment prior to the film deposition, and most importantly, encouraging electrical properties.
View Article and Find Full Text PDFAn efficient method based on molecular beam epitaxy has been developed to integrate an epitaxial Ge quantum well buried into a single crystalline rare earth oxide. The monolithic heterostructure comprised of Gd2O3-Ge-Gd2O3 grown on an Si substrate exhibits excellent crystalline quality with atomically sharp interfaces. This heterostructure with unique structural quality could be used for novel nanoelectronic applications in quantum-effect devices such as nanoscale transistors with a high mobility channel, resonant tunneling diode/transistors, etc.
View Article and Find Full Text PDFPhys Rev B Condens Matter
October 1995
Phys Rev B Condens Matter
November 1994
Phys Rev B Condens Matter
June 1994