Publications by authors named "HILTON H"

Inflammation is associated with localized acidosis, however, attributing physiological and pathological roles to proton-sensitive receptors is challenging due to their diversity and widespread expression. Here, agonists of the proton-sensing GPCR, GPR65, were systematically characterized. The synthetic agonist BTB09089 (BTB) recapitulated many proton-induced signaling events and demonstrated selectivity for GPR65.

View Article and Find Full Text PDF

HLA class I alleles of archaic origin may have been retained in modern humans because they provide immunity against diseases to which archaic humans had evolved resistance. According to this model, archaic introgressed alleles were somehow distinct from those that evolved in African populations. Here we show that HLA-B*73:01, a rare allotype with putative archaic origins, has a relatively rare peptide binding motif with an unusually long-tailed peptide length distribution.

View Article and Find Full Text PDF

The pressing need for safer, more efficacious analgesics is felt worldwide. Preclinical tests in animal models of painful conditions represent one of the earliest checkpoints novel therapeutics must negotiate before consideration for human use. Traditionally, the pain status of laboratory animals has been inferred from evoked nociceptive assays that measure their responses to noxious stimuli.

View Article and Find Full Text PDF

Hyperexcitability in sensory neurons is known to underlie many of the maladaptive changes associated with persistent pain. Chemogenetics has shown promise as a means to suppress such excitability, yet chemogenetic approaches suitable for human applications are needed. PSAM-GlyR is a modular system based on the human α7 nicotinic acetylcholine and glycine receptors, which responds to inert chemical ligands and the clinically approved drug varenicline.

View Article and Find Full Text PDF

Ongoing pain is driven by the activation and modulation of pain-sensing neurons, affecting physiology, motor function, and motivation to engage in certain behaviors. The complexity of the pain state has evaded a comprehensive definition, especially in non-verbal animals. Here, in mice, we used site-specific electrophysiology to define key time points corresponding to peripheral sensitivity in acute paw inflammation and chronic knee pain models.

View Article and Find Full Text PDF

Background: The role of nuclear receptors in both the aetiology and treatment of breast cancer is exemplified by the use of the oestrogen receptor (ER) as a prognostic marker and treatment target. Treatments targeting the oestrogen signalling pathway are initially highly effective for most patients. However, for the breast cancers that fail to respond, or become resistant, to current endocrine treatments, the long-term outlook is poor.

View Article and Find Full Text PDF

Genetic diversity in human natural killer (NK) cell receptors is linked to resistance and susceptibility to many diseases. Here, we tested the effect of this diversity on the nanoscale organization of killer cell immunoglobulin-like receptors (KIRs). Using superresolution microscopy, we found that inhibitory KIRs encoded by different genes and alleles were organized differently at the surface of primary human NK cells.

View Article and Find Full Text PDF

The immune system comprises a complex network of specialized cells that protects against infection, eliminates cancerous cells, and regulates tissue repair, thus serving a critical role in homeostasis, health span, and life span. The subterranean-dwelling naked mole-rat (NM-R; Heterocephalus glaber) exhibits prolonged life span relative to its body size, is unusually cancer resistant, and manifests few physiological or molecular changes with advancing age. We therefore hypothesized that the immune system of NM-Rs evolved unique features that confer enhanced cancer immunosurveillance and prevent the age-associated decline in homeostasis.

View Article and Find Full Text PDF

Germline mutations in the breast cancer susceptibility gene BRCA1, encoding a tumor suppressor protein, greatly enhance the risk of breast and ovarian cancer. This tissue-specificity implicates the role of ovarian hormones. Indeed, BRCA1 has been demonstrated to regulate the signalling axis of the hormone, progesterone, and its receptor, the progesterone receptor (PR), and progesterone action has been implicated in BRCA1-related tumorigenesis.

View Article and Find Full Text PDF

Mutations in genes essential for mitochondrial function have pleiotropic effects. The mechanisms underlying these traits yield insights into metabolic homeostasis and potential therapies. Here we report the characterization of a mouse model harboring a mutation in the tryptophanyl-tRNA synthetase 2 (Wars2) gene, encoding the mitochondrial-localized WARS2 protein.

View Article and Find Full Text PDF

Autosomal Recessive Polycystic Kidney Disease (ARPKD) is a genetic disorder with an incidence of ~1:20,000 that manifests in a wide range of renal and liver disease severity in human patients and can lead to perinatal mortality. ARPKD is caused by mutations in PKHD1, which encodes the large membrane protein, Fibrocystin, required for normal branching morphogenesis of the ureteric bud during embryonic renal development. The variation in ARPKD phenotype suggests that in addition to PKHD1 mutations, other genes may play a role, acting as modifiers of disease severity.

View Article and Find Full Text PDF

Immunophenotypic differences between closely related human leukocyte antigen (HLA) alleles have been associated with divergent clinical outcomes in infection, autoimmunity, transplantation and drug hypersensitivity. Here we explore the impact of micropolymorphism on peptide antigen presentation by three closely related HLA molecules, HLA-B*57:01, HLA-B*57:03 and HLA-B*58:01, that are differentially associated with the HIV elite controller phenotype and adverse drug reactions. For each allotype, we mine HLA ligand data sets derived from the same parental cell proteome to define qualitative differences in peptide presentation using classical peptide binding motifs and an unbiased statistical approach.

View Article and Find Full Text PDF

Killer-cell Ig-like receptor (KIR) genes are inherited as haplotypes. They are expressed by NK cells and linked to outcomes of infectious diseases and pregnancy in humans. Understanding how genotype relates to phenotype is difficult because of the extensive diversity of the KIR family.

View Article and Find Full Text PDF

Doctoral students in science disciplines spend countless hours learning how to conduct cutting-edge research but very little time learning to communicate the nature and significance of their science to people outside their field. To narrow this disparity, we created an unusual course titled Communicating Science for doctoral science trainees at Rutgers University. Our goal was to help students develop an advanced ability to communicate their research clearly and accurately and to emphasize its value and significance to diverse audiences.

View Article and Find Full Text PDF

The functions of human NK cells in defense against pathogens and placental development during reproduction are modulated by interactions of killer cell Ig-like receptors (KIRs) with HLA-A, -B and -C class I ligands. Both receptors and ligands are highly polymorphic and exhibit extensive differences between human populations. Indigenous to southern Africa are the KhoeSan, the most ancient group of modern human populations, who have highest genomic diversity worldwide.

View Article and Find Full Text PDF

This study proposes that a novel developmental hierarchy of breast cancer (BC) cells (BCCs) could predict treatment response and outcome. The continued challenge to treat BC requires stratification of BCCs into distinct subsets. This would provide insights on how BCCs evade treatment and adapt dormancy for decades.

View Article and Find Full Text PDF

The ovarian hormones estrogen and progesterone are master regulators of the development and function of a broad spectrum of human tissues, including the breast, reproductive and cardiovascular systems, brain and bone. Acting through the nuclear estrogen (ER) and progesterone receptors (PR), both play complex and essential coordinated roles in the extensive development of the lobular alveolar epithelial structures of the normal breast during puberty, the normal menstrual cycle and pregnancy. The past decade has seen major advances in understanding the mechanisms of action of estrogen and progesterone in the normal breast and in the delineation of the complex hierarchy of cell types regulated by ovarian hormones in this tissue.

View Article and Find Full Text PDF

Natural killer (NK) cells are fast-acting and versatile lymphocytes that are critical effectors of innate immunity, adaptive immunity, and placental development. Controlling NK cell function are the interactions between killer-cell immunoglobulin-like receptors (KIRs) and their HLA-A, HLA-B and HLA-C ligands. Due to the extensive polymorphism of both KIR and HLA class I, these interactions are highly diversified and specific combinations correlate with protection or susceptibility to a range of infectious, autoimmune, and reproductive disorders.

View Article and Find Full Text PDF

Introduction: KIR2DS5 is an activating human NK cell receptor of lineage III KIR. These include both inhibitory KIR2DL1, 2 and 3 and activating KIR2DS1 that recognize either the C1 or C2 epitope of HLA-C. In Europeans KIR2DS5 is essentially monomorphic, with KIR2DS5*002 being predominant.

View Article and Find Full Text PDF

HLA-B46:01 was formed by an intergenic mini-conversion, between HLA-B15:01 and HLA-C01:02, in Southeast Asia during the last 50,000 years, and it has since become the most common HLA-B allele in the region. A functional effect of the mini-conversion was introduction of the C1 epitope into HLA-B46:01, making it an exceptional HLA-B allotype that is recognized by the C1-specific natural killer (NK) cell receptor KIR2DL3. High-resolution mass spectrometry showed that HLA-B46:01 has a low-diversity peptidome that is distinct from those of its parents.

View Article and Find Full Text PDF

The immune and reproductive functions of human NK cells are regulated by interactions of the C1 and C2 epitopes of HLA-C with C1-specific and C2-specific lineage III killer cell Ig-like receptors (KIR). This rapidly evolving and diverse system of ligands and receptors is restricted to humans and great apes. In this context, the orangutan has particular relevance because it represents an evolutionary intermediate, one having the C1 epitope and corresponding KIR but lacking the C2 epitope.

View Article and Find Full Text PDF

is an inactive member of the human family, which includes all HLA-C-specific receptor genes. The lethal, and only, defect in is a nucleotide deletion in codon 88. Fixed in modern humans, the deletion is also in archaic human genomes.

View Article and Find Full Text PDF