Publications by authors named "HICKMAN J"

High levels of the intracellular signalling molecule cyclic diguanylate (c-di-GMP) supress motility and activate exopolysaccharide (EPS) production in a variety of bacterial species. In many bacteria part of the effect of c-di-GMP is on gene expression, but the mechanism involved is not known for any species. We have identified the protein FleQ as a c-di-GMP-responsive transcriptional regulator in Pseudomonas aeruginosa.

View Article and Find Full Text PDF

We are attempting to recreate a stretch reflex circuit on a patterned Bio-MEMS (bio-microelectromechanical systems) chip with deflecting micro-cantilevers. The first steps to recreate this system is to be able to grow individual components of the circuit (sensory neuron, motoneuron, skeletal muscle, and muscle spindle) on a patternable, synthetic substrate coating the MEMS device. Sensory neurons represent the afferent portion of the stretch reflex arc and also play a significant role in transmitting the signal from the muscle spindle to the spinal cord motoneurons.

View Article and Find Full Text PDF

This paper reports on the computational simulation and modeling of an in vitro alveolar construct system along the optical coherence microscopy (OCM) methods for visualizing engineered tissue. The optical imaging methods will be compared to immunohistochemical light microscopy samples of engineered alveolar constructs. Results show depth images of the alveolar tissue construct for a bilayer construct, as well as predictions of the gas exchange process in a simple model of a bio-reactor hosting the construct.

View Article and Find Full Text PDF

We describe here an efficient synthesis of new 5-azaindolocarbazoles designed for cytotoxic and Chk1 inhibiting properties. The synthesis of 'symmetrical' and 'dissymmetrical' structures is discussed. Concerning the dissymmetrical 5-azaindolocarbazoles derivatives, with both an indole moiety and a 5-azaindole moiety, the synthesis was achieved using two very efficient key steps.

View Article and Find Full Text PDF

Maturation of neuronal synapses is thought to involve mitochondria. Bcl-xL protein inhibits mitochondria-mediated apoptosis but may have other functions in healthy adult neurons in which Bcl-xL is abundant. Here, we report that overexpression of Bcl-xL postsynaptically increases frequency and amplitude of spontaneous miniature synaptic currents in rat hippocampal neurons in culture.

View Article and Find Full Text PDF

A role for BCL-xL in regulating neuronal activity is suggested by its dramatic effects on synaptic function and mitochondrial channel activity. When recombinant BCL-xL is injected into the giant presynaptic terminal of squid stellate ganglion or applied directly to mitochondrial outer membranes within the living terminal, it potentiates synaptic transmission acutely, and it produces mitochondrial channel activity. The squid, however, is a genetically intractable model, making it difficult to apply genetic tools in squid to explore the role of endogenous BCL-xL in synaptic function.

View Article and Find Full Text PDF

While much is known about muscle spindle structure, innervation and function, relatively few factors have been identified that regulate intrafusal fiber differentiation and spindle development. Identification of these factors will be a crucial step in tissue engineering functional muscle systems. In this study, we investigated the role of the growth factor, neuregulin 1-beta-1 (Nrg 1-beta-1) EGF, for its ability to influence myotube fate specification in a defined culture system utilizing the non-biological substrate N-1[3-(trimethoxysilyl)propyl]-diethylenetriamine (DETA).

View Article and Find Full Text PDF

The ability to culture functional adult mammalian spinal cord neurons represents an important step in the understanding and treatment of a spectrum of neurological disorders including spinal cord injury. Previously, the limited functional recovery of these cells, as characterized by a diminished ability to initiate action potentials and to exhibit repetitive firing patterns, has arisen as a major impediment to their physiological relevance. In this report, we demonstrate that single temporal doses of the neurotransmitters serotonin, glutamate (N-acetyl-DL-glutamic acid) and acetylcholine-chloride lead to the full electrophysiological functional recovery of adult mammalian spinal cord neurons, when they are cultured under defined serum-free conditions.

View Article and Find Full Text PDF

Previous research has found that commercial drivers get an average of 5.18 h of sleep per night. The revised hours-of-service (HOS) regulations (in the United States) are in place to provide drivers with more opportunities to get sleep.

View Article and Find Full Text PDF

When added to cells, a variety of autophagy inducers that operate through distinct mechanisms and target different organelles for autophagic destruction (mitochondria in mitophagy, endoplasmic reticulum in reticulophagy) rarely induce autophagic vacuolization in more than 50% or the cells. Here we show that this heterogeneity may be explained by cell cycle-specific effects. The BH3 mimetic ABT737, lithium, rapamycin, tunicamycin or nutrient depletion stereotypically induce autophagy preferentially in the G(1) and S phases of the cell cycle, as determined by simultaneous monitoring of cell cycle markers and the cytoplasmic aggregation of GFP-LC3 in autophagic vacuoles.

View Article and Find Full Text PDF

Enabling older adults to interact with new technologies is an important immediate and long-term goal for training research. The literature provides general guidance for developing training programs; however, it is important to determine the type of training that works best for younger and older adults, for immediate performance, and for learning. In the present study we assessed the relative benefits of guided action training and guided attention training for younger and older adults learning to use a novel technology system.

View Article and Find Full Text PDF

This protocol describes a cell culture model to study the differentiation of fetal rat skeletal muscle cells. The model uses serum-free medium, a nonbiological substrate N-1[3(trimethoxysilyl)propyl] diethylenetriamine (DETA) and fabricated microcantilevers to promote the differentiation of dissociated rat myocytes into robust myotubes. In this protocol, we also describe how to characterize the myotubes on the basis of morphology, immunocytochemistry and electrophysiology.

View Article and Find Full Text PDF

We have developed a biological micro-electromechanical system (Bio-MEMS) device consisting of surface-modified microfabricated silicon cantilevers and an AFM detection apparatus for the study of cultured myotubes. With this system we are able to selectively stimulate the myotubes as well as report on a variety of physiological properties of the myotubes in real time and in a high-throughput manner. This system will serve as the foundation for future work integrating multiple tissue types for the creation of Bio-MEMS analogues of complex tissues and biological circuits.

View Article and Find Full Text PDF

The synthesis of new isogranulatimide analogues, their inhibitory activities toward the Checkpoint 1 kinase (Chk1), and their in vitro cytotoxicities toward four tumor cell lines (one murine L1210 leukemia, and three human cell lines: DU145 prostate carcinoma, A549 non-small cell lung carcinoma, and HT29 colon carcinoma) are described. The affinity for DNA of some representative compounds and their ability to induce DNA cleavage mediated by topoisomerase I have been examined. In some of the newly synthesized compounds, the imidazole heterocycle of isogranulatimide is replaced by a pyrrole and/or the indole unit is replaced by a 7-azaindole.

View Article and Find Full Text PDF

The E-ring lactone is the Achilles' heel of camptothecin derivatives: although it is considered necessary for the inhibition of the enzyme topoisomerase I (topo1), the opening of the lactone into a carboxylate abolishes the generation of topo1-mediated DNA breaks. S38809 is a novel camptothecin analog with a stable 5-membered E-ring ketone; therefore, it lacks the lactone function. DNA relaxation and cleavage assays revealed that S38809 functions as a typical topo1 poison by stimulating DNA cleavage at T downward arrow G sites.

View Article and Find Full Text PDF

The anti-apoptotic proteins Bcl-2 and Bcl-X(L) bind and inhibit Beclin-1, an essential mediator of autophagy. Here, we demonstrate that this interaction involves a BH3 domain within Beclin-1 (residues 114-123). The physical interaction between Beclin-1 and Bcl-X(L) is lost when the BH3 domain of Beclin-1 or the BH3 receptor domain of Bcl-X(L) is mutated.

View Article and Find Full Text PDF

Background: Orthodontic treatment involves using fixed or removable appliances (dental braces) to correct the positions of teeth. It has been shown that the quality of treatment result obtained with fixed appliances is much better than with removable appliances. Fixed appliances are, therefore, favoured by most orthodontists for treatment.

View Article and Find Full Text PDF

Beclin 1 has recently been identified as novel BH3-only protein, meaning that it carries one Bcl-2-homology-3 (BH3) domain. As other BH3-only proteins, Beclin 1 interacts with anti-apoptotic multidomain proteins of the Bcl-2 family (in particular Bcl-2 and its homologue Bcl-X(L)) by virtue of its BH3 domain, an amphipathic alpha-helix that binds to the hydrophobic cleft of Bcl-2/Bcl-X(L). The BH3 domains of other BH3-only proteins such as Bad, as well as BH3-mimetic compounds such as ABT737, competitively disrupt the inhibitory interaction between Beclin 1 and Bcl-2/Bcl-X(L).

View Article and Find Full Text PDF

This paper describes a significant biotechnological advancement by creating a minimalist serum-free defined system to co-culture rat mammalian nerve and muscle cells in order to form functional neuromuscular junctions. To date, all the known in vitro nerve and muscle co-culture models use serum containing media; and while functional neuromuscular junctions (NMJ) are described, they failed to detail or quantify the minimum factors needed to recreate the NMJ in vitro. In this work, we demonstrate the development of a defined motoneuron and muscle co-culture system resulting in the formation of NMJs including: 1) a new culture technique, 2) a novel serum-free medium formulation and 3) a synthetic self-assembled monolayer (SAM) substrate N-1 [3-(trimethoxysilyl) propyl] diethylenetriamine (DETA).

View Article and Find Full Text PDF

As a component of the apoptosome, a caspase-activating complex, Apaf-1 plays a central role in the mitochondrial caspase activation pathway of apoptosis. We report here the identification of a novel Apaf-1 interacting protein, hepatocellular carcinoma antigen 66 (HCA66) that is able to modulate selectively Apaf-1-dependent apoptosis through its direct association with the CED4 domain of Apaf-1. Expression of HCA66 was able to potentiate Apaf-1, but not receptor-mediated apoptosis, by increasing downstream caspase activity following cytochrome c release from the mitochondria.

View Article and Find Full Text PDF

The C2C12 cell line is frequently used as a model of skeletal muscle differentiation. In our serum-free defined culture system, differentiation of C2C12 cells into myotubes required surface-bound signals such as substrate-adsorbed vitronectin or laminin. On the basis of this substrate requirement of myotube formation, we developed a photolithography-based method to pattern C2C12 myotubes, where myotubes formed exclusively on vitronectin surface patterns.

View Article and Find Full Text PDF

This paper describes the evaluation of the auto-catalytic anti-oxidant behavior and biocompatibility of cerium oxide nanoparticles for applications in spinal cord repair and other diseases of the central nervous system. The application of a single dose of nano-ceria at a nano-molar concentration is biocompatible, regenerative and provides a significant neuroprotective effect on adult rat spinal cord neurons. Retention of neuronal function is demonstrated from electrophysiological recordings and the possibility of its application to prevent ischemic insult is suggested from an oxidative injury assay.

View Article and Find Full Text PDF

We report what we believe to be the first experimental observation of a large spatial lateral shift in the interaction of obliquely oriented spatial dark-soliton stripes. We demonstrate by numerical simulations that this new effect can be attributed to the specific features of optical media with a nonlocal nonlinear response.

View Article and Find Full Text PDF

Two recently completed on-road in situ (naturalistic) data collection efforts provided a large data set in which to conduct an examination of crashes, near-crashes, and crash-relevant conflicts (referred to as critical incidents throughout this paper) that occurred between light vehicles (LV) and heavy vehicles (HV). Video and non-video data collected during the two studies were used to characterize critical incidents that were recorded between LV and HV drivers. Across both studies, 210 LV-HV critical incidents were recorded.

View Article and Find Full Text PDF

All classes of anticancer drugs induce apoptosis both in vitro and in vivo. Because apoptosis is a genetically controlled process, this implies that death induced by these drugs is genetically controlled at loci different from those involved in their direct mechanisms of action. This is stimulus-response-coupling; the drugs provide the stimulus through imposition of cell damage.

View Article and Find Full Text PDF