Of the 300 billion capillaries in the human lung, a small fraction meet normal oxygen requirements at rest, with the remainder forming a large reserve. The maximum oxygen demands of the acute stress response require that the reserve capillaries are rapidly recruited. To remain primed for emergencies, the normal cardiac output must be parceled throughout the capillary bed to maintain low opening pressures.
View Article and Find Full Text PDFThe present study was undertaken to establish the role of NADPH oxidase (Nox) in impaired vascular compensation to arterial occlusion that occurs in the presence of risk factors associated with oxidative stress. Diet-induced obese (DIO) mice characterized by multiple comorbidities including diabetes and hyperlipidemia were used as a preclinical model. Arterial occlusion was induced by distal femoral artery ligation in lean and DIO mice.
View Article and Find Full Text PDFNitric oxide (NO) generated by endothelial cells to relax vascular smooth muscle is one of the most intensely studied molecules in the past 25 years. Much of what is known about NO regulation of NO is based on blockade of its generation and analysis of changes in vascular regulation. This approach has been useful to demonstrate the importance of NO in large scale forms of regulation but provides less information on the nuances of NO regulation.
View Article and Find Full Text PDFObjective: There is a debate if the [NO] required to influence vascular smooth muscle is below 50 nM or much higher. Electrodes with 30 μm and larger diameter report [NO] below 50 nM, whereas those with diameters of <10-12 μm report hundreds of nM. This study examined how size of electrodes influenced [NO] measurement due to NO consumption and unstirred layer issues.
View Article and Find Full Text PDFConduction of arteriolar vasodilation is initiated by activation of nitric oxide (NO) mechanisms, but dependent on conduction of hyperpolarization. Most studies have used brief (<1 second) activation of the initial vasodilation to evaluate the fast conduction processes. However, most arteriolar mechanisms involving NO production persist for minutes.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
November 2011
Microscopic lymphatics produce nitric oxide (NO) during contraction as flow shear activates the endothelial cells. The valve leaflets and bulbous valve housing contain a large amount of endothelial nitric oxide synthase (eNOS) due both to many endothelial cells and increased expression of eNOS. Direct NO measurements indicate the valve area has a 30-50% higher NO concentration ([NO]) than tubular regions although both regions generate equivalent relative increases in [NO] with each contraction.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
December 2009
Previous work in our laboratory showed increased basal periarterial nitric oxide (NO) and H2O2 concentrations in the spontaneously hypertensive rat, characterized by oxidant stress, as well as impaired flow-mediated NO production that was corrected by a reduction of periarterial H2O2. Aging is also associated with an increase in vascular reactive oxygen species and results in abnormal vascular function. The current study was designed to assess the role of H2O2 in regulating NO production during vascular aging.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
October 2009
Multiple investigators have shown interdependence of lymphatic contractions on nitric oxide (NO) activity by pharmacological and traumatic suppression of endothelial NO synthase (eNOS). We demonstrated that lymphatic diastolic relaxation is particularly sensitive to NO from the lymphatic endothelium. The predicted mechanism is shear forces produced by the lymph flow during phasic pumping, activating eNOS in the lymphatic endothelium to produce NO.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
October 2009
The discovery that hemoglobin, albumin, and glutathione carry and release nitric oxide (NO) may have consequences for movement of NO by blood within microvessels. We hypothesize that NO in plasma or bound to proteins likely survives to downstream locations. To confirm this hypothesis, there must be a finite NO concentration ([NO]) in arteriolar blood, and upstream resistance vessels must be able to increase the vessel wall [NO] of downstream arterioles.
View Article and Find Full Text PDFEndogenous periadventitial adipose-derived factors have been shown to contribute to coronary vascular regulation by impairing endothelial function through a direct inhibition of endothelial nitric oxide synthase (eNOS). However, our understanding of the underlying mechanisms remains uncertain. Accordingly, this study was designed to test the hypothesis that periadventitial adipose tissue releases agents that attenuate coronary endothelial nitric oxide production via a protein kinase C (PKC)-beta-dependent mechanism.
View Article and Find Full Text PDFObjective: We tested the hypothesis that differential stimulation of nitric oxide (NO) production can be induced in pre- and postcapillary segments of the microcirculation in the hamster cheek pouch.
Materials And Methods: We applied acetylcholine (ACh) or platelet-activating factor (PAF) topically and measured perivascular NO concentration ([NO]) with NO-sensitive microelectrodes in arterioles and venules of the hamster cheek pouch. We also measured NO in cultured coronary endothelial cells (CVEC) after ACh or PAF.
Am J Physiol Heart Circ Physiol
September 2008
Nitric oxide (NO) and reactive oxygen species (ROS) have fundamentally important roles in the regulation of vascular tone and remodeling. Although arterial disease and endothelial dysfunction alter NO and ROS levels to impact vasodilation and vascular structure, direct measurements of these reactive species under in vivo conditions with flow alterations are unavailable. In this study, in vivo measurements of NO and H2O2 were made on mesenteric arteries to determine whether antioxidant therapies could restore normal NO production in spontaneously hypertensive rats (SHR).
View Article and Find Full Text PDFAdipocytokines may be the molecular link between obesity and vascular disease. However, the effects of these factors on coronary vascular function have not been discerned. Accordingly, the goal of this investigation was to delineate the mechanisms by which endogenous adipose-derived factors affect coronary vascular endothelial function.
View Article and Find Full Text PDFNa(+) cotransporters have a substantial role in neuronal damage during brain hypoxia. We proposed these cotransporters have beneficial roles in oxygen-sensing mechanisms that increase periarteriolar nitric oxide (NO) concentration ([NO]) during mild to moderate oxygen deprivation. Our prior studies have shown that cerebral neuronal NO synthase (nNOS) is essential for [NO] responses to decreased oxygen tension and that endothelial NO synthase (eNOS) is of little consequence.
View Article and Find Full Text PDFObjective: Arginine used for nitric oxide formation can be from intracellular stores or transported into cells. The study evaluated the rapidity, and primary site of NO and vascular resistance responses to arginine at near physiological concentrations (100-400 microM).
Methods: Arginine was applied to a single arteriole through a micropipette to determine the fastest possible responses.
Am J Physiol Heart Circ Physiol
October 2007
Endothelial (eNOS) and neuronal nitric oxide synthase (nNOS) are implicated as important contributors to cerebral vascular regulation through nitric oxide (NO). However, direct in vivo measurements of NO in the brain have not been used to dissect their relative roles, particularly as related to oxygenation of brain tissue. We found that, in vivo, rat cerebral arterioles had increased NO concentration ([NO]) and diameter at reduced periarteriolar oxygen tension (Po(2)) when either bath oxygen tension or arterial pressure was decreased.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
October 2005
In cultured endothelial cells, 70-95% of extracellular l-arginine uptake has been attributed to the cationic amino acid transporter-1 protein (CAT-1). We tested the hypothesis that extracellular l-arginine entry into endothelial cells via CAT-1 plays a crucial role in endothelial nitric oxide (NO) production during in vivo conditions. Using l-lysine, the preferred amino acid transported by CAT-1, we competitively inhibited extracellular l-arginine transport into endothelial cells during conditions of NaCl hyperosmolarity, low oxygen, and flow increase.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
January 2005
NaCl hyperosmolarity increases intestinal blood flow during food absorption due in large part to increased NO production. We hypothesized that in vivo, sodium ions enter endothelial cells during NaCl hyperosmolarity as the first step to stimulate an increase in intestinal endothelial NO production. Perivascular NO concentration ([NO]) and blood flow were determined in the in vivo rat intestinal microvasculature at rest and under hyperosmotic conditions, 330 and 380 mosM, respectively, before and after application of bumetanide (Na(+)-K(+)-2Cl(-) cotransporter inhibitor) or amiloride (Na(+)/H(+) exchange channel inhibitor).
View Article and Find Full Text PDFAm J Physiol Renal Physiol
September 2004
Kidney glomeruli are important targets of diabetic nephropathy. We hypothesized a high concentration of glucose could suppress glomerular endothelial nitric oxide synthase (eNOS) by a protein kinase C (PKC) mechanism, as has been found in other tissues. Mouse kidney slices (150-200 microm) were bathed in Hanks' solution with 100 microM L-arginine and exposed to either 5 or 20-30 mM D-glucose.
View Article and Find Full Text PDFCurr Hypertens Rep
February 2004
Obesity in the absence of hyperglycemia carries a low risk for microvascular disease compared with type II diabetes. The occurrence of hyperglycemia seems to be an important, if not the most important, distinction between obesity and obesity plus diabetes mellitus for microvascular disease. In vitro and in vivo human and animal studies of the early microvascular consequences of hyperglycemia indicate an immediate detrimental suppression of vasodilatory microvascular mechanisms that might be even worse with pre-existing obesity.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
February 2004
In severe obesity, microvascular endothelial regulation of nitric oxide (NO) formation is compromised in response to muscarinic stimulation, and major arteries have suppressed flow-mediated dilation. Because normal microvessels are highly dependent on flow-mediated stimulation of NO generation and are responsive to intra- and extravascular oxygen availability, they are likely a major site of impaired endothelial regulation. This study evaluated the blood flow and oxygen-dependent aspects of intestinal microvascular regulation and NO production in Zucker obese rats just before the onset of hyperglycemia.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
August 2003
Many studies have suggested that endothelial cells can act as "oxygen sensors" to large reductions in oxygen availability by increasing nitric oxide (NO) production. This study determined whether small reductions in oxygen availability enhanced NO production from in vivo intestinal arterioles, venules, and parenchymal cells. In vivo measurements of perivascular NO concentration ([NO]) were made with NO-sensitive microelectrodes during normoxic and reduced oxygen availability.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
July 2002
Obesity is a risk for type II diabetes mellitus and increased vascular resistance. Disturbances of nitric oxide (NO) physiology occur in both obese animals and humans. In obese Zucker rats, we determined whether a protein kinase C-beta II (PKC-beta II) mechanism may lower the resting NO concentration ([NO]) and predispose endothelial NO abnormalities at lower glucose concentrations than occur in lean rats.
View Article and Find Full Text PDFClin Exp Pharmacol Physiol
June 2002
1. Hyperglycaemia in the vast majority of humans with diabetes mellitus is the end result of profound insulin resistance secondary to obesity. For patients in treatment, hyperglycaemia is usually not sustained but, rather, occurs intermittently.
View Article and Find Full Text PDF