Publications by authors named "HETTINGER T"

The species of the hygropetric water scavenger beetle genus Oocyclus Sharp, 1882 are reviewed for Ecuador. The genus has not previously been reported from the country. Twelve new species are described: O.

View Article and Find Full Text PDF

Chemosensory disorders, primarily olfactory, have diagnostic significance for prevalent human illnesses, but the multitude of smells makes measuring function appear daunting. The olfactory system operates under dynamic natural sensing conditions in which many individual odor chemicals are waxing and waning. Yet, in experimentally controlled simulations, mixture-component selective adaptation shows individual or shared prominent characteristic odors are detected but molecular stimulus features are not.

View Article and Find Full Text PDF

Natural olfactory stimuli are volatile-chemical mixtures in which relative perceptual saliencies determine which odor-components are identified. Odor identification also depends on rapid selective adaptation, as shown for 4 odor stimuli in an earlier experimental simulation of natural conditions. Adapt-test pairs of mixtures of water-soluble, distinct odor stimuli with chemical features in common were studied.

View Article and Find Full Text PDF

The sensational "reactome array" paper published in Science in 2009 was investigated in Spain by the Ethics Committee of Consejo Superior de Investigaciones Cientificas (CSIC) after Science issued an editorial expression of concern. The paper was retracted in 2010 because of "skepticism" due to "errors" in chemistry. The "errors" were so profound that many readers expressed doubt that they were really errors, but part of an elaborate hoax.

View Article and Find Full Text PDF

Little is known about coding of taste mixtures in complex dynamic stimulus environments. A protocol developed for odor stimuli was used to test whether rapid selective adaptation extracted sugar and salt component tastes from mixtures as it did component odors. Seventeen human subjects identified taste components of "salt + sugar" mixtures.

View Article and Find Full Text PDF

Component signaling in taste mixtures containing both beneficial and dangerous chemicals depends on peripheral processing. Unidirectional mixture suppression of chorda tympani (CT) nerve responses to sucrose by quinine and acid is documented for golden hamsters (Mesocricetus auratus). To investigate mixtures of NaCl and acids, we recorded multifiber responses to 50 mM NaCl, 1 and 3 mM citric acid and acetic acid, 250 μM citric acid, 20 mM acetic acid, and all binary combinations of each acid with NaCl (with and without 30 μM amiloride added).

View Article and Find Full Text PDF

Based on crosses among inbred strains derived principally from M. m. domesticus, sucrose octaacetate (SOA) aversion in laboratory mice has been thought for many years to be controlled by a single genetic locus (Soa) located on distal chromosome (Chr) 6.

View Article and Find Full Text PDF

Identification of odors of compounds introduced into changeable olfactory environments is the essence of olfactory coding, which focuses perception on the latest stimulus with the greatest salience. Effects of stimulus intensity and adapting time on mixture component identification after adapting with one component were each studied in 10 human subjects. Odors of 1 and 5 mM vanillin (vanilla) and phenethyl alcohol (rose) were identified, with adapting time varied by sniffing naturally once or twice, or sniffing 5 times, once every 2 s.

View Article and Find Full Text PDF

Studies of taste receptor cells, chorda tympani (CT) neurons, and brainstem neurons show stimulus interactions in the form of inhibition or enhancement of the effectiveness of sucrose when mixed with acids or citrate salts, respectively. To investigate further the effects of acids and the trivalent citrate anion on sucrose responses in hamsters (Mesocricetus auratus), we recorded multifiber CT responses to 100 mM sucrose; a concentration series of HCl, citric acid, acetic acid, sodium citrate (with and without amiloride added), potassium citrate, and all binary combinations of acids and salts with 100 mM sucrose. Compared with response additivity, sucrose responses were increasingly suppressed in acid + sucrose mixtures with increases in titratable acidity, but HCl and citric acid were more effective suppressors than acetic acid.

View Article and Find Full Text PDF

Effects of cathodal current, which draws cations away from the tongue and drives anions toward the tongue, depend on the ionic content of electrolytes through which the current is passed. To address the role of cations and anions in human salt tastes, cathodal currents of -40 microA to -80 microA were applied to human subjects' tongues through supra-threshold salt solutions. The salts were sodium chloride, sodium bromide, potassium chloride, ammonium chloride, calcium chloride, sodium nitrate, sodium sulfate, sodium saccharin, sodium acetate and sodium benzoate, which taken together encompass salty, bitter, sour and sweet taste qualities.

View Article and Find Full Text PDF

Cycloheximide (CyX), a toxic antibiotic with a unique chemical structure generated by the actinomycete, Streptomyces griseus, has emerged as a primary focus of studies on mammalian bitter taste. Rats and mice avoid it at concentrations well below the thresholds for most bitter stimuli and T2R G-protein-coupled receptors specific for CyX with appropriate sensitivity are identified for those species. Like mouse and rat, golden hamsters, Mesocricetus auratus, also detected and rejected micromolar levels of CyX, although 1mM CyX failed to activate the hamster chorda tympani nerve.

View Article and Find Full Text PDF

Humans cannot reliably identify the distinctive characteristic odors of components in mixtures containing more than three compounds. In the present study, we demonstrate that selective adaptation can improve component identification. Characteristic component odors, lost in mixtures, were identifiable after presenting other mixture constituents for a few seconds.

View Article and Find Full Text PDF

Behaviors and taste-nerve responses to bitter stimuli are linked to compounds that bind T2 receptors expressed in one subset of taste-bud receptor cells (TRCs); and behavioral and neural responses to sweet stimuli are linked to chemical compounds that bind a T1 receptor expressed in a different TRC subset. Neural and behavioral responses to bitter-sweet mixtures, however, complicate the ostensible bitter and sweet labeled lines. In the golden hamster, Mesocricetus auratus, quinine hydrochloride, the bitter prototype, suppresses chorda tympani (CT) nerve responses to the sweet prototype: sucrose.

View Article and Find Full Text PDF

Variation in intake of sweet and bitter solutions by inbred strains of laboratory mice has helped identify genes related to taste behaviors; but similar information is not available for golden hamsters (Mesocricetus auratus ), a species used much in taste research. Thus, 6-hour, 1-bottle intake by water-replete hamsters of 7 inbred strains was measured for water and 2 concentrations of sucrose, maltose, D-phenylalanine (D-Phe), and sodium saccharin, which are sweet; and quinine.HCl, L-phenylalanine (L-Phe), caffeine, and sucrose octaacetate (SOA), which are bitter to humans.

View Article and Find Full Text PDF

The diverse chemical structures of stimuli that are bitter to humans suggest a need for multiple bitter receptors. Reactions of golden hamsters (Mesocricetus auratus) to 1 mM quinine hydrochloride, 3 mM denatonium benzoate, 180 mM magnesium sulfate, 30-100 mM caffeine, and 1-1.5 mM sucrose octaacetate (SOA) were studied to address whether there are multiple sensations elicited by bitter stimuli.

View Article and Find Full Text PDF

The tastes of 100 mM sodium chloride (NaCl), 100 mM sucrose, and 1 mM quinine hydrochloride in mixtures were investigated in golden hamsters (Mesocricetus auratus) with a conditioned taste aversion (CTA) paradigm. CTAs, established in golden hamsters by injection of lithium chloride, were quantified as percent suppression of control 1-hr stimulus intake. CTAs for 10 of 15 stimulus pairs with common components symmetrically cross-generalized, suggesting that component qualities were recognized in binary and ternary mixtures.

View Article and Find Full Text PDF

Chlorhexidine, a bitter bis-biguanide antiseptic, is the only known blocker of the human salty taste. In order to characterize the effects of chlorhexidine on stimulus identification, taste confusion matrix (TCM) performance was measured for subjects treated with 1.34 mM chlorhexidine gluconate (n = 9) and water controls (n = 9).

View Article and Find Full Text PDF

Chlorhexidine, a bis-cationic biguanide antiseptic, greatly reduces the perceived intensity of the salty prototype sodium chloride and may prove to be an important probe of mechanisms that underlie the human salty taste quality. Chlorhexidine, which tastes bitter, also reduces quinine hydrochloride taste intensity, but neither sweet sucrose nor sour citric acid is affected. Perceptual intensity rating and quality identification were measured for human subjects before and for 30 min following treatment with 1.

View Article and Find Full Text PDF

Taste stimulus identification was studied in order to more thoroughly examine human taste perception. Ten replicates of an array of 10 taste stimuli--NaCl, KCl, Na glutamate, quinine. HCl, citric acid, sucrose, aspartame, and NaCl-sucrose, acid-sucrose, and quinine-sucrose mixtures--were presented to normal subjects for identification from a list of corresponding stimulus names.

View Article and Find Full Text PDF

The effect of a gymnemic acid (GA) rinse, which simulated a sweet-taste deficit, was measured on human taste perception and identification. Taste ratings showed that GA reduced the intensities of sucrose and aspartame to 14% of pre-rinse levels; over the recovery interval of 30 min, these values increased linearly to 63% of the pre-rinse levels. Repeated presentations of a set of 10 stimuli (five primarily or partly sweet--sucrose, aspartame, and NaCl-sucrose, acid-sucrose and quinine-sucrose mixtures; and five nonsweet--NaCl, KCl, Na glutamate (MSG), quinine HCl and citric acid) for identification following water and GA rinses produced 'taste confusion matrices' (TCMs).

View Article and Find Full Text PDF