Publications by authors named "HC Hege"

Recent advances in connectomics research enable the acquisition of increasing amounts of data about the connectivity patterns of neurons. How can we use this wealth of data to efficiently derive and test hypotheses about the principles underlying these patterns? A common approach is to simulate neuronal networks using a hypothesized wiring rule in a generative model and to compare the resulting synthetic data with empirical data. However, most wiring rules have at least some free parameters, and identifying parameters that reproduce empirical data can be challenging as it often requires manual parameter tuning.

View Article and Find Full Text PDF

One of the fundamental problems in neurobiological research is to understand how neural circuits generate behaviors in response to sensory stimuli. Elucidating such neural circuits requires anatomical and functional information about the neurons that are active during the processing of the sensory information and generation of the respective response, as well as an identification of the connections between these neurons. With modern imaging techniques, both morphological properties of individual neurons as well as functional information related to sensory processing, information integration and behavior can be obtained.

View Article and Find Full Text PDF

The neurons in the cerebral cortex are not randomly interconnected. This specificity in wiring can result from synapse formation mechanisms that connect neurons, depending on their electrical activity and genetically defined identity. Here, we report that the morphological properties of the neurons provide an additional prominent source by which wiring specificity emerges in cortical networks.

View Article and Find Full Text PDF

We present visual methods for the analysis and comparison of the results of curved fibre reconstruction algorithms, i.e., of algorithms extracting characteristics of curved fibres from X-ray computed tomography scans.

View Article and Find Full Text PDF

Background: Geometric parameters have been proposed for prediction of cerebral aneurysm rupture risk. Predicting the rupture risk for incidentally detected unruptured aneurysms could help clinicians in their treatment decision. However, assessment of geometric parameters depends on several factors, including the spatial resolution of the imaging modality used and the chosen reconstruction procedure.

View Article and Find Full Text PDF

The analysis and visualization of nucleic acids (RNA and DNA) is playing an increasingly important role due to their fundamental importance for all forms of life and the growing number of known 3D structures of such molecules. The great complexity of these structures, in particular, those of RNA, demands interactive visualization to get deeper insights into the relationship between the 2D secondary structure motifs and their 3D tertiary structures. Over the last decades, a lot of research in molecular visualization has focused on the visual exploration of protein structures while nucleic acids have only been marginally addressed.

View Article and Find Full Text PDF

A great amount of material properties is strongly influenced by dislocations, the carriers of plastic deformation. It is therefore paramount to have appropriate tools to quantify dislocation substructures with regard to their features, e.g.

View Article and Find Full Text PDF

ORBKIT is a toolbox for postprocessing electronic structure calculations based on a highly modular and portable Python architecture. The program allows computing a multitude of electronic properties of molecular systems on arbitrary spatial grids from the basis set representation of its electronic wavefunction, as well as several grid-independent properties. The required data can be extracted directly from the standard output of a large number of quantum chemistry programs.

View Article and Find Full Text PDF

Purpose: To account for the impact of turbulence in blood damage modeling, a novel approach based on the generation of instantaneous flow fields from RANS simulations is proposed.

Methods: Turbulent flow in a bileaflet mechanical heart valve was simulated using RANS-based (SST k-ω) flow solver using FLUENT 14.5.

View Article and Find Full Text PDF

The most popular molecular surface in molecular visualization is the solvent excluded surface (SES). It provides information about the accessibility of a biomolecule for a solvent molecule that is geometrically approximated by a sphere. During a period of almost four decades, the SES has served for many purposes - including visualization, analysis of molecular interactions and the study of cavities in molecular structures.

View Article and Find Full Text PDF

Membrane proteins mediate processes that are fundamental for the flourishing of biological cells. Membrane-embedded transporters move ions and larger solutes across membranes; receptors mediate communication between the cell and its environment and membrane-embedded enzymes catalyze chemical reactions. Understanding these mechanisms of action requires knowledge of how the proteins couple to their fluid, hydrated lipid membrane environment.

View Article and Find Full Text PDF

Unlabelled: PURPOSE/AIMS OF THE STUDY: Bone's hierarchical structure can be visualized using a variety of methods. Many techniques, such as light and electron microscopy generate two-dimensional (2D) images, while micro-computed tomography (µCT) allows a direct representation of the three-dimensional (3D) structure. In addition, different methods provide complementary structural information, such as the arrangement of organic or inorganic compounds.

View Article and Find Full Text PDF

Sensory-evoked signal flow, at cellular and network levels, is primarily determined by the synaptic wiring of the underlying neuronal circuitry. Measurements of synaptic innervation, connection probabilities and subcellular organization of synaptic inputs are thus among the most active fields of research in contemporary neuroscience. Methods to measure these quantities range from electrophysiological recordings over reconstructions of dendrite-axon overlap at light-microscopic levels to dense circuit reconstructions of small volumes at electron-microscopic resolution.

View Article and Find Full Text PDF

Hunterian ligation affecting hemodynamics in vessels was proposed to avoid rebleeding in a case of a fenestrated basilar artery aneurysm after incomplete coil occlusion. We studied the hemodynamics in vitro to predict the hemodynamic changes near the aneurysm remnant caused by Hunterian ligation. A transparent model was fabricated based on three-dimensional rotational angiography imaging.

View Article and Find Full Text PDF

Background: The internal cavities of proteins are dynamic structures and their dynamics may be associated with conformational changes which are required for the functioning of the protein. In order to study the dynamics of these internal protein cavities, appropriate tools are required that allow rapid identification of the cavities as well as assessment of their time-dependent structures.

Results: In this paper, we present such a tool and give results that illustrate the applicability for the analysis of molecular dynamics trajectories.

View Article and Find Full Text PDF

Neuroanatomical analysis, such as classification of cell types, depends on reliable reconstruction of large numbers of complete 3D dendrite and axon morphologies. At present, the majority of neuron reconstructions are obtained from preparations in a single tissue slice in vitro, thus suffering from cut off dendrites and, more dramatically, cut off axons. In general, axons can innervate volumes of several cubic millimeters and may reach path lengths of tens of centimeters.

View Article and Find Full Text PDF

We propose a novel GPU-based approach to render virtual X-ray projections of deformable tetrahedral meshes. These meshes represent the shape and the internal density distribution of a particular anatomical structure and are derived from statistical shape and intensity models (SSIMs). We apply our method to improve the geometric reconstruction of 3D anatomy (e.

View Article and Find Full Text PDF

Background And Study Aims: Image-based computational fluid dynamics (CFD) provides a means for analysis of biofluid mechanical parameters of cerebral aneurysms. This may enable patient-specific rupture risk analysis and facilitate treatment decisions. Application of different imaging methods may, however, alter the geometrical basis of these studies.

View Article and Find Full Text PDF

Deformable surface models are often represented as triangular meshes in image segmentation applications. For a fast and easily regularized deformation onto the target object boundary, the vertices of the mesh are commonly moved along line segments (typically surface normals). However, in case of high mesh curvature, these lines may not intersect with the target boundary at all.

View Article and Find Full Text PDF

The grading of inflammatory bowel disease (IBD) severity is important to determine the proper treatment strategy and to quantify the response to treatment. Traditionally, ileocolonoscopy is considered the reference standard for assessment of IBD. However, the procedure is invasive and requires extensive bowel preparation.

View Article and Find Full Text PDF

We present a Visual Analytics approach that addresses the detection of interesting patterns in numerical time series, specifically from environmental sciences. Crucial for the detection of interesting temporal patterns are the time scale and the starting points one is looking at. Our approach makes no assumption about time scale and starting position of temporal patterns and consists of three main steps: an algorithm to compute statistical values for all possible time scales and starting positions of intervals, visual identification of potentially interesting patterns in a matrix visualization, and interactive exploration of detected patterns.

View Article and Find Full Text PDF

The ability to rapidly assess microtubule number in 3D image stacks from electron tomograms is essential for collecting statistically meaningful data sets. Here we implement microtubule tracing using 3D template matching. We evaluate our results by comparing the automatically traced centerlines to manual tracings in a large number of electron tomograms of the centrosome of the early Caenorhabditis elegans embryo.

View Article and Find Full Text PDF

Acceleration is a fundamental quantity of flow fields that captures Galilean invariant properties of particle motion. Considering the magnitude of this field, minima represent characteristic structures of the flow that can be classified as saddle- or vortex-like. We made the interesting observation that vortex-like minima are enclosed by particularly pronounced ridges.

View Article and Find Full Text PDF