In construing meaning, the brain recruits multimodal (conceptual) systems and embodied (modality-specific) mechanisms. Yet, no consensus exists on how crucial the latter are for the inception of semantic distinctions. To address this issue, we combined electroencephalographic (EEG) and intracranial EEG (iEEG) to examine when nouns denoting facial body parts (FBPs) and nonFBPs are discriminated in face-processing and multimodal networks.
View Article and Find Full Text PDFSecond-site mutagenesis was performed on the argonaute1-33 (ago1-33) hypomorphic mutant, which exhibits reduced sense transgene posttranscriptional gene silencing (S-PTGS). Mutations in FIERY1, a positive regulator of the cytoplasmic 5'-to-3' EXORIBONUCLEASE4 (XRN4), and in SUPERKILLER3 (SKI3), a member of the SKI complex that threads RNAs directly to the 3'-to-5' exoribonuclease of the cytoplasmic exosome, compensated AGO1 partial deficiency and restored S-PTGS with 100% efficiency. Moreover, xrn4 and ski3 single mutations provoked the entry of nonsilenced transgenes into S-PTGS and enhanced S-PTGS on partially silenced transgenes, indicating that cytoplasmic 5'-to-3' and 3'-to-5' RNA degradation generally counteract S-PTGS, likely by reducing the amount of transgene aberrant RNAs that are used by the S-PTGS pathway to build up small interfering RNAs that guide transgene RNA cleavage by AGO1.
View Article and Find Full Text PDFArabidopsis thaliana defense against distinct positive-strand RNA viruses requires production of virus-derived secondary small interfering RNAs (siRNAs) by multiple RNA-dependent RNA polymerases. However, little is known about the biogenesis pathway and effector mechanism of viral secondary siRNAs. Here, we describe a mutant of Cucumber mosaic virus (CMV-Δ2b) that is silenced predominantly by the RNA-DEPENDENT RNA POLYMERASE6 (RDR6)-dependent viral secondary siRNA pathway.
View Article and Find Full Text PDFPlant microRNAs (miRNAs) and small interfering RNAs (siRNAs) bear a 2'-O-methyl group on the 3'-terminal nucleotide. This methyl group is post-synthetically added by the methyltransferase protein HEN1 and protects small RNAs from enzymatic activities that target the 3'-OH. A mutagenesis screen for suppressors of the partial loss-of-function hen1-2 allele in Arabidopsis identified second-site mutations that restore miRNA methylation.
View Article and Find Full Text PDFTo better understand the diversity of small silencing RNAs expressed in plants, we employed high-throughput pyrosequencing to obtain 887,000 reads corresponding to Arabidopsis thaliana small RNAs. They represented 340,000 unique sequences, a substantially greater diversity than previously obtained in any species. Most of the small RNAs had the properties of heterochromatic small interfering RNAs (siRNAs) associated with DNA silencing in that they were preferentially 24 nucleotides long and mapped to intergenic regions.
View Article and Find Full Text PDFMicroRNAs (miRNAs) and short interfering RNAs (siRNAs), 20- to 27-nt in length, are essential regulatory molecules that act as sequence-specific guides in several processes in most eukaryotes (with the notable exception of the yeast Saccharomyces cerevisiae). These processes include DNA elimination, heterochromatin assembly, mRNA cleavage and translational repression. This review focuses on the regulatory roles of plant miRNAs during development, in the adaptive response to stresses and in the miRNA pathway itself.
View Article and Find Full Text PDFArabidopsis ARGONAUTE1 (AGO1) encodes the RNA slicer enzyme of the microRNA (miRNA) pathway and is regulated by miR168-programmed, AGO1-catalyzed mRNA cleavage. Here, we describe two additional regulatory processes required for AGO1 homeostasis: transcriptional coregulation of MIR168 and AGO1 genes, and posttranscriptional stabilization of miR168 by AGO1. Disrupting any of these regulatory processes by using mutations or transgenes disturbs a proper functioning of the miRNA pathway.
View Article and Find Full Text PDFIn mammalian cells, the nuclear export receptor, Exportin 5 (Exp5), exports pre-microRNAs (pre-miRNAs) as well as tRNAs into the cytoplasm. In this study, we examined the function of HASTY (HST), the Arabidopsis ortholog of Exp5, in the biogenesis of miRNAs and tRNAs. In contrast to mammals, we found that miRNAs exist as single-stranded 20- to 21-nt molecules in the nucleus in Arabidopsis.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are endogenous 21-24-nt RNAs that can down-regulate gene expression by pairing to the messages of protein-coding genes to specify mRNA cleavage or repression of productive translation. They act within the RNA-induced silencing complex (RISC), which in animals contains a member of the Argonaute family of proteins. In the present study, we show that Arabidopsis ago1 mutants have increased accumulation of mRNAs known to be targeted for cleavage by miRNAs.
View Article and Find Full Text PDFIn animals, double-stranded short interfering RNA (siRNA) and single-stranded microRNA (miRNA) regulate gene expression by targeting homologous mRNA for cleavage or by interfering with their translation, respectively. siRNAs are processed from injected or transgene-derived, long, perfect double-stranded RNA (dsRNA), while miRNAs are processed from short, imperfect dsRNA precursors transcribed from endogenous intergenic regions. In plants, both siRNAs and miRNAs activate cleavage of homologous RNA targets, but little is known about the genes controlling their production or action.
View Article and Find Full Text PDFPost-transcriptional gene silencing (PTGS) is a sequence-specific RNA degradation mechanism that is widespread in eukaryotic organisms. It is often associated with methylation of the transcribed region of the silenced gene and with accumulation of small RNAs (21 to 25 nucleotides) homologous to the silenced gene. In plants, PTGS can be triggered locally and then spread throughout the organism via a mobile signal that can cross a graft junction.
View Article and Find Full Text PDFHomology-dependent gene silencing is a regulatory mechanism that limits RNA accumulation from affected loci either by suppression of transcription (transcriptional gene silencing, TGS) or by activation of a sequence-specific RNA degradation process (post-transcriptional gene silencing, PTGS). The P1/HC-Pro sequence of plant potyviruses and the 2b gene of the cucumber mosaic virus have been shown to interfere with PTGS. The ability of these viral suppressors of PTGS to interfere with TGS was tested using the 271 locus which imposes TGS on transgenes under 35S or 19S promoters and PTGS on the endogenous nitrite reductase gene (Nii).
View Article and Find Full Text PDFTransgenic Nicotiana plumbaginifolia plants that express either a 5-fold increase or a 20-fold decrease in nitrate reductase (NR) activity were used to study the relationships between carbon and nitrogen metabolism in leaves. Under saturating irradiance the maximum rate of photosynthesis, per unit surface area, was decreased in the low NR expressors but was relatively unchanged in the high NR expressors compared with the wild-type controls. However, when photosynthesis was expressed on a chlorophyll (Chl) basis the low NR plants had comparable or even higher values than the wild-type plants.
View Article and Find Full Text PDF