Small ubiquitin-related modifier (SUMO)-specific protease 2 (SENP2) is essential for the development of healthy placenta. The loss of SENP2 causes severe placental deficiencies and leads to embryonic death that is associated with heart and brain deformities. However, tissue-specific disruption of SENP2 demonstrates its dispensable role in embryogenesis and the embryonic defects are secondary to placental insufficiency.
View Article and Find Full Text PDFRecent identification and isolation of suture stem cells capable of long-term self-renewal, clonal expanding, and differentiating demonstrate their essential role in calvarial bone development, homeostasis, and injury repair. These bona fide stem cells express a high level of Axin2 and are able to mediate bone regeneration and repair in a cell autonomous fashion. The importance of Axin2 is further demonstrated by its genetic inactivation in mice causing skeletal deformities resembling craniosynostosis in humans.
View Article and Find Full Text PDFSUMO-specific protease 2 (SENP2) activities to remove SUMO from its substrates is essential for development of trophoblast stem cells, niches and lineages. Global deletion of SENP2 leads to midgestation lethality, and causes severe defects in the placenta which is accompanied by embryonic brain and heart abnormalities. Because of the placental deficiencies, the role of SENP2 in development of the embryonic tissues has not been properly determined.
View Article and Find Full Text PDFPost-translational modification of proteins by small ubiquitin-related modifier (SUMO) is reversible and highly evolutionarily conserved from yeasts to humans. Unlike ubiquitination with a well-established role in protein degradation, sumoylation may alter protein function, activity, stability and subcellular localization. Members of SUMO-specific protease (SENP) family, capable of SUMO removal, are involved in the reversed conjugation process.
View Article and Find Full Text PDFAberrant regulation of the Wnt pathway, essential for various developmental processes, is tightly linked to human breast cancers. By hijacking this evolutionary conserved signaling pathway, cancer cells acquire sustaining proliferation ability, leading to modification of physiologic properties necessary for tumor initiation and progression. An enormous wealth of knowledge on the importance of Wnt signaling in breast development and cancer has been obtained, but the cell types responsible for production of this proliferative signal operating within normal and malignant tissues remains poorly understood.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.