Neurophysiol Clin
December 2007
Introduction: Neurophysiological assessment can provide quantitative measures for the selected motor signs that have been targeted for surgery and may be helpful in predicting the therapeutic effects of deep brain stimulation (DBS) on pathological tremor, motor performance, and rigidity.
Objective: To present a survey and demonstrate the contribution of neurophysiological assessment of side effects and effects on disabling motor symptoms at various steps of DBS surgery, and to confirm its role for optimal target localization, as an adjuvant to anatomic imaging.
Material And Methods: The data result from 192 nuclei in 118 procedures on patients with Parkinson's disease (84), essential tremor (24), Hallenvorder Spatz dystonia (4), multiple sclerosis (4), and Holmes tremor (2).
Neurophysiol Clin
December 2007
Introduction: In spite of the use of multipulse, transcranial electrical stimulation (TES) is still insufficient in a subgroup of patients to elicit motor-evoked potentials during intraoperative neurophysiological monitoring (IONM). Classic facilitation methods used in awake patients are precluded under general anaesthesia. Conditioning techniques can be used in this situation.
View Article and Find Full Text PDFIntroduction: Conventional linear signal processing techniques are not always suitable for the detection of tremor bursts in clinical practice due to inevitable noise from electromyographic (EMG) bursts. This study introduces (1) a non-linear analysis technique based on a running second order moment function (SOMF) and (2) auto- and cross-interburst interval histograms (IBIH) showing distributions of interburst interval EMG bursts of pathological tremors illustrating an application of the SOMF.
Materials And Methods: EMG recordings from extensors and flexors of two patients with Parkinson's disease with a rest tremor and from a healthy subject during sustained muscular contraction were preliminary analyzed in a pilot study.
Motor potentials evoked by transcranial electrical stimulation (TES) are used for monitoring the motor pathways, with emphasis on the spinal cord and brainstem. The stimulus voltage threshold is the voltage below which no motor response can be elicited. It has frequently been used as a monitoring parameter.
View Article and Find Full Text PDFMotor evoked potentials (MEPs) evoked by transcranial electrical stimulation (TES) have become an important technique for monitoring spinal cord function intra-operatively, but can fail in some patients. A new technique of double-train stimulation is described. A multipulse transcranial electrical stimulus is preceded by a preconditioning pulse train that leads to larger MEP responses.
View Article and Find Full Text PDF