Pancreatic ductal adenocarcinoma (PDAC) is one of the most challenging types of cancer with little or no response to immune checkpoint inhibitors (ICIs). Photodynamic therapy (PDT) has been shown to ablate tumors and induce an immune response. In our study, we investigated the effect of photodynamic therapy (PDT), using the photosensitizer Bremachlorin, in its ability to reduce tumor burden and to sensitize immunologically T-cell high and T-cell low murine PDAC tumors to the ICI that blocks programmed cell death-1 (PD-1) immune checkpoint.
View Article and Find Full Text PDF[This corrects the article DOI: 10.7150/thno.37949.
View Article and Find Full Text PDFMethods that allow real-time, longitudinal, intravital detection of the fluorescence distribution and the cellular and vascular responses within tumor and normal tissue are important tools to obtain valuable information when investigating new photosensitizers and photodynamic therapy (PDT) responses. Intravital confocal microscopy using the dorsal skinfold chamber model gives the opportunity to visualize and determine the distribution of photosensitizers within tumor and normal tissue. Next to that, it also allows the visualization of the effect of treatment with respect to changes in vascular diameter and blood flow, vascular leakage, and tissue necrosis, in the first days post-illumination.
View Article and Find Full Text PDFA novel fermentation process was developed in which renewable electricity is indirectly used as an energy source in fermentation, synergistically decreasing both the consumption of sugar as a first generation carbon source and emission of the greenhouse gas CO . As an illustration, a glucose-based process is co-fed with formic acid, which can be generated by capturing CO from fermentation offgas followed by electrochemical reduction with renewable electricity. This "closed carbon loop" concept is demonstrated by a case study in which cofeeding formic acid is shown to significantly increase the yield of biomass on glucose of the industrially relevant yeast species Yarrowia lipolytica.
View Article and Find Full Text PDF