Interferon-stimulated gene 15 (ISG15) encodes a protein that is most upregulated by type I interferon stimulation and, upon activation, is conjugated to various target proteins in a process known as ISGylation. ISGylation has been shown to have roles in various biological phenomena such as viral infection and cancer. To gain further insight into the function of ISGylation, it would be useful to be able to identify ISGylated proteins.
View Article and Find Full Text PDFTreatment of the allenylazetidine-alkynes with a catalytic amount of [RhCl(CO)dppp]2 (dppp: 1,3-bis(diphenylphosphino)propane) effected the intramolecular hetero-[6+2]-type ring-closing reaction via the C-C bond cleavage of the azetidine ring to produce azabicyclo[6.4.0]dodecatriene derivatives in good to excellent yields.
View Article and Find Full Text PDFTwo new strongylophorine derivatives, along with six known strongylophorines, were isolated from the marine sponge Petrosia corticata as proteasome inhibitors. Of these, a hemiacetal mixture of strongylophorines-13/-14 was the strongest inhibitor of the proteasome with an IC50 of 2.1μM.
View Article and Find Full Text PDFInterferon-stimulated gene 15 kDa (ISG15) is a protein upregulated by interferon-β that negatively regulates osteoclastogenesis. We investigated the role of ISG15 in receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenic differentiation of murine RAW264 cells. RANKL stimulation induced ISG15 expression in RAW264 cells at both the mRNA and protein levels.
View Article and Find Full Text PDF