Publications by authors named "H Y Gong"

Neutrophils play key protective roles in influenza infections, yet excessive neutrophilic inflammation is a hallmark of acute lung injury during severe infections. Phenotypic heterogeneity is increasingly recognized in neutrophil populations; however, how functional variation in neutrophils between individuals determine the diverse outcomes of influenza remains unclear. To examine immunologic responses that may drive varying outcomes in influenza, we infected C57BL/6 (B6) and A/J mice with mouse-adapted influenza A virus A/PR/8/34 H1N1.

View Article and Find Full Text PDF

Proper regulation of the source-sink relationship is an effective way to increase crop yield. Gibberellin (GA) is an important regulator of plant growth and development, and physiological evidence has demonstrated that GA can promote source-sink sucrose partitioning. However, the underlying molecular mechanism remains unclear.

View Article and Find Full Text PDF

Introduction: Alzheimer's disease (AD) is the most common neurodegenerative disease, characterized by damage to cortical circuits. However, the mechanisms underlying AD-associated changes in long-range circuits remain poorly understood.

Methods: In this study, we used viral tracing and fluorescence micro-optical sectioning tomography (fMOST) imaging to investigate whole-brain changes in the input circuit of the frontal cortex of 5×FAD mice.

View Article and Find Full Text PDF

Peripheral nerve injury (PNI)-induced neuropathic pain (NP) is a severe disease with high prevalence in clinics. Gene reprogramming and tissue remodeling in the dorsal root ganglia (DRG) and spinal cord (SC) drive the development and maintenance of neuropathic pain (NP). However, our understanding of the NP-associated spatial molecular processing landscape of SC and the non-synaptic interactions between DRG neurons and SC cells remains limited.

View Article and Find Full Text PDF

With the rapid development of artificial intelligence technology, an increasing number of village-related modeling problems have been addressed. However, first, the exploration of village-related watershed fine-grained classification problems, particularly the multi-view watershed fine-grained classification problem, has been hindered by dataset collection limitations; Second, village-related modeling networks typically employ convolutional modules for attentional modeling to extract salient features, yet they lack global attentional feature modeling capabilities; Lastly, the extensive number of parameters and significant computational demands render village-related watershed fine-grained classification networks infeasible for end-device deployment. To tackle these challenges, we introduce a multi-view attention mechanism designed for precise watershed classification, leveraging knowledge distillation techniques, abbreviated as MANet-KD.

View Article and Find Full Text PDF