Publications by authors named "H Y Al-Abdulwahed"

Signal peptide-CUB-EGF domain-containing protein 3 (SCUBE3) is a member of a small family of multifunctional cell surface-anchored glycoproteins functioning as co-receptors for a variety of growth factors. Here we report that bi-allelic inactivating variants in SCUBE3 have pleiotropic consequences on development and cause a previously unrecognized syndromic disorder. Eighteen affected individuals from nine unrelated families showed a consistent phenotype characterized by reduced growth, skeletal features, distinctive craniofacial appearance, and dental anomalies.

View Article and Find Full Text PDF

Type 2 collagenopathies encompass a large group of chondrodysplasias ranging from the perinatally lethal achondrogenesis type 2 and hypochondrogenesis at the severe end of the spectrum to early-onset osteoarthritis with normal stature at the milder end of the spectrum. With the exception of a few reported cases, these dysplasias are predominantly caused by heterozygous variants in the COL2A1 gene and hence show an autosomal dominant inheritance pattern. Here we report on two siblings, originating from a consanguineous family, who presented with disproportionate short stature, ocular abnormalities, cleft palate and hearing impairment.

View Article and Find Full Text PDF
Article Synopsis
  • Neuronal migration defects like pachygyria are severe developmental brain issues, and researchers found mutations in the CTNNA2 gene, which encodes αN-catenin, linked to a recessive form of this condition.
  • Loss of αN-catenin in neurons resulted in problems with the stability and migration of neurites, though it did not disrupt β-catenin signaling.
  • The study reveals that αN-catenin interacts with actin and suppresses ARP2/3 activity, suggesting that targeting this pathway could help address neuronal issues related to CTNNA2 mutations.
View Article and Find Full Text PDF

Mucopolysaccharidosis (MPS VI) or Maroteaux-Lamy syndrome is an autosomal recessive lysosomal storage disease caused by deficiency of the enzyme N-acetylgalactosamine 4-sulfatase or arylsulfatase B. It is involved in the degradation of glycosaminoglycans and characterized by a wide spectrum of clinical and genetic heterogeneity. So far, more than 150 mutations have been reported in the ARSB gene.

View Article and Find Full Text PDF

Background: Nail-patella syndrome (NPS) is an autosomal dominant disorder with a variable interfamilial and intrafamilial clinical expressivity and penetrance. It is caused by loss-of-function heterozygous mutation in the LIM-homeodomain transcription factor (LMX1B) located on chromosome 9q. The pleiotropic LMB1X gene, a member of the homeogene family, is involved in the development of glomerular basement membrane, dorsoventral limb structures, along with the nails and the anterior segment of the eye.

View Article and Find Full Text PDF