Publications by authors named "H Woods"

Reduction-oxidation factor-1 or apurinic/apyrimidinic endonuclease 1 (Ref-1/APE1) is a crucial redox-sensitive activator of transcription factors such as NF-κB, HIF-1α, STAT-3 and others. It could contribute to key features of ocular neovascularization including inflammation and angiogenesis; these underlie diseases like neovascular age-related macular degeneration (nAMD). We previously revealed a role for Ref-1 in the growth of ocular endothelial cells and in choroidal neovascularization (CNV).

View Article and Find Full Text PDF

Background: Oncology nurses frequently contend with intense work-related emotions stemming from their roles, which include bearing witness to suffering, managing end-of-life care, and navigating ethical dilemmas. These emotional challenges can lead to burnout, compassion fatigue, and overall psychological distress.

Objective: To determine the feasibility, acceptability, and preliminary effect of implementing Storytelling Through Music (STM) online with oncology nurses.

View Article and Find Full Text PDF

Cationic polymers have the unique ability to neutralize negative charge with practical applications in personal care products, such as shampoos, conditioners, contact lens solutions, and as flocculants in wastewater treatment processes. Cationic polymers are a diverse class of materials varying in structural composition, cationic charge density (CD), and molecular weight (MW). In this study, we investigated three classes of polyquaternium cationic polymers (PQ-6, PQ-10, PQ-16) of varying CD and MW to characterize their toxicity to aquatic invertebrates.

View Article and Find Full Text PDF

Animals, including insects, need oxygen for aerobic respiration and eventually asphyxiate without it. Aerobic respiration, however, produces reactive oxygen species (ROS), which contribute to dysfunction and aging. Animals appear to balance risks of asphyxiation and ROS by regulating internal oxygen relatively low and stable, but sufficient levels.

View Article and Find Full Text PDF

Many membrane proteins are prone to misfolding, which compromises their functional expression at the plasma membrane. This is particularly true for the mammalian gonadotropin-releasing hormone receptor GPCRs (GnRHR). We recently demonstrated that evolutionary GnRHR modifications appear to have coincided with adaptive changes in cotranslational folding efficiency.

View Article and Find Full Text PDF