Publications by authors named "H W Pfister"

Connectomics is a subfield of neuroscience that aims to map the brain's intricate wiring diagram. Accurate neuron segmentation from microscopy volumes is essential for automating connectome reconstruction. However, current state-of-the-art algorithms use image-based convolutional neural networks that are limited to local neuron shape context.

View Article and Find Full Text PDF

This paper presents a systematic study of the generalization of convolutional neural networks (CNNs) and humans on relational reasoning tasks with bar charts. We first revisit previous experiments on graphical perception and update the benchmark performance of CNNs. We then test the generalization performance of CNNs on a classic relational reasoning task: estimating bar length ratios in a bar chart, by progressively perturbing the standard visualizations.

View Article and Find Full Text PDF

We present Cell2Cell, a novel visual analytics approach for quantifying and visualizing networks of cell-cell interactions in three-dimensional (3D) multi-channel cancerous tissue data. By analyzing cellular interactions, biomedical experts can gain a more accurate understanding of the intricate relationships between cancer and immune cells. Recent methods have focused on inferring interaction based on the proximity of cells in low-resolution 2D multi-channel imaging data.

View Article and Find Full Text PDF

As basketball's popularity surges, fans often find themselves confused and overwhelmed by the rapid game pace and complexity. Basketball tactics, involving a complex series of actions, require substantial knowledge to be fully understood. This complexity leads to a need for additional information and explanation, which can distract fans from the game.

View Article and Find Full Text PDF

Mapping neuronal networks is a central focus in neuroscience. While volume electron microscopy (vEM) can reveal the fine structure of neuronal networks (connectomics), it does not provide molecular information to identify cell types or functions. We developed an approach that uses fluorescent single-chain variable fragments (scFvs) to perform multiplexed detergent-free immunolabeling and volumetric-correlated-light-and-electron-microscopy on the same sample.

View Article and Find Full Text PDF