Electrochemical oxidation of fresh human urine is a promising method to prevent pharmaceuticals from being discharged into the environment. Here, we evaluate the importance of electro-generated oxidants and direct anodic oxidation for degradation of four pharmaceutical (cyclophosphamide (CP), carbamazepine (CBZ), sulfamethoxazole (SMX) and ibuprofen (IBP)) accounting for the scavenging effect of urine constituents using boron-doped diamond (BDD) and IrO electrodes. Allyl alcohol and tert-butanol were used as selective quenchers for adsorbed and dissolved radicals, respectively.
View Article and Find Full Text PDFHalide perovskites have the potential to disrupt the photovoltaics market based on their high performance and low cost. However, the decomposition of perovskites under moisture, oxygen, and light raises concerns about service lifetime, especially because degradation mechanisms and the corresponding rate laws that fit the observed data have thus far eluded researchers. Here, we report a water-accelerated photooxidation mechanism dominating the degradation kinetics of archetypal perovskite CHNHPbI in air under >1% relative humidity at 25 °C.
View Article and Find Full Text PDFAlthough the multiple-component (MC) blend strategy has been frequently used as a very effective way to improve the performance of organic solar cells (OSCs), there is a strong need to understand the fundamental working mechanism and material selection rule for achieving optimal MC-OSCs. Here we present the 'dilution effect' as the mechanism for MC-OSCs, where two highly miscible components are molecularly intermixed. Contrary to the aggregation-induced non-radiative decay, the dilution effect enables higher luminescence quantum efficiencies and open-circuit voltages (V) in MC-OSCs via suppressed electron-vibration coupling.
View Article and Find Full Text PDFUrine comprises only a small (~1%) volumetric fraction of municipal wastewater, but represents a dominant source of pharmaceuticals, many of which may pass through conventional wastewater treatment and pose risks to aquatic ecosystems. Point-source treatment of source-separated urine presents a unique opportunity to degrade pharmaceuticals before dilution with wastewater, and electrochemical advanced oxidation processes are one increasingly investigated option. However, they often lead to the formation of oxidation byproducts including chlorate, perchlorate at very high concentrations.
View Article and Find Full Text PDFWe present a mechanistic explanation of the BiI film formation process and an analysis of the critical factors in preparing high-quality solution-processed BiI films. We find that complexation with Lewis bases, relative humidity, and temperature are important factors during solvent vapor annealing (SVA) of films. During SVA, water vapor and higher temperatures limit the formation of the BiI-dimethylformamide coordination complex.
View Article and Find Full Text PDF