Publications by authors named "H W Hilhorst"

Vegetative desiccation tolerance (VDT), the ability of such tissues to survive the near complete loss of cellular water, is a rare but polyphyletic phenotype. It is a complex multifactorial trait, typified by universal (core) factors but with many and varied adaptations due to plant architecture, biochemistry and biotic/abiotic dynamics of particular ecological niches. The ability to enter into a quiescent biophysically stable state is what ultimately determines desiccation tolerance.

View Article and Find Full Text PDF

The survival of extreme water deficit stress by tolerant organisms requires a coordinated series of responses, including those at cellular, transcriptional, translational and metabolic levels. Small molecules play a pivotal role in creating the proper chemical environment for the preservation of cellular integrity and homeostasis during dehydration. This review surveys recent insights in the importance of primary and specialised metabolites in the response to drying of angiosperms with vegetative desiccation tolerance, i.

View Article and Find Full Text PDF

Seeds are essential for plant reproduction, survival, and dispersal. Germination ability and successful establishment of young seedlings strongly depend on seed quality and on environmental factors such as nutrient availability. In tomato (Solanum lycopersicum) and many other species, seed quality and seedling establishment characteristics are determined by genetic variation, as well as the maternal environment in which the seeds develop and mature.

View Article and Find Full Text PDF

Seed dormancy is a very complex trait controlled by interactions between genetic and environmental factors. Nitrate is inversely correlated with seed dormancy in Arabidopsis. This is explained by the fact that seed dry storage (after-ripening) reduces the need for nitrogen for germination.

View Article and Find Full Text PDF

Climate change necessitates increased stress resilience of food crops. We describe four potential solutions, with emphasis on a relatively novel approach aiming at true tolerance of drought rather than improved water-holding capacity of crops, which is a common approach in current breeding and genome editing efforts. Some Angiosperms are known to tolerate loss of 95% of their cellular water, without dying, not dissimilar to seeds.

View Article and Find Full Text PDF