Background: Molecular tumor boards (MTBs) play a pivotal role in personalized oncology, leveraging complex data sets to tailor therapy for cancer patients. The integration of digital support and visualization tools is essential in this rapidly evolving field facing fast-growing data and changing clinical processes. This study addresses the gap in understanding the evolution of software and visualization needs within MTBs and evaluates the current state of digital support.
View Article and Find Full Text PDFRecent advances in computational methods like AlphaFold have transformed structural biology, enabling accurate modeling of protein complexes and driving applications in drug discovery and protein engineering. However, predicting the structure of systems involving weak, transient, or dynamic interactions, or of complexes with disordered regions, remains challenging. Nuclear Magnetic Resonance (NMR) spectroscopy offers atomic-level insights into biomolecular complexes, even in weakly interacting and dynamic systems.
View Article and Find Full Text PDFThe complex and heterogeneous genomic landscape of multiple myeloma (MM) and many of its clinical and prognostic implications remains to be understood. In other cancers, such as breast cancer, using whole-exome sequencing (WES) and molecular signatures in clinical practice has revolutionized classification, prognostic prediction, and patient management. However, such integration is still in its early stages in MM.
View Article and Find Full Text PDFIn Germany, a substantial reform of emergency care is strictly recommended. Regulation of patient flows into the ambulatory and stationary sectors remains a major issue.In the OPTINOFA project funded by Innovationsfunds, a new triage system was developed for a structured primary evaluation of both urgency and care level of emergency cases.
View Article and Find Full Text PDF