Hydrophobins are one of the most active surface active proteins in nature, with an amphiphilic nature and the ability to self-assembly in elastic monolayers, the possible applications in industry are continuously increasing. However, production and purification of these proteins still remains a tedious process. We introduce here the use of polydopamine as imprinter polymer to create specific magnetic nanoparticles for the recognition of Hydrophobin HFBII from Trichoderma reesei.
View Article and Find Full Text PDFEver since the introduction of controlled fermentation processes, alcoholic fermentations and Saccharomyces cerevisiae starter cultures proved to be a match made in heaven. The ability of S. cerevisiae to produce and withstand high ethanol concentrations, its pleasant flavour profile and the absence of health-threatening toxin production are only a few of the features that make it the ideal alcoholic fermentation organism.
View Article and Find Full Text PDFIn this work, the interactions of a well-studied hydrophobin with different types of nonpolar model substances and their impact on primary gushing is evaluated. The nature, length, and degree of saturation of nonpolar molecules are key parameters defining the gushing ability or inhibition. When mixed with hydrophobins, the nonpolar molecule-hydrophobin assembly acts as a less gushing or no gushing system.
View Article and Find Full Text PDFThe α(7) nicotinic acetylcholine receptor (nAChR) is a potential therapeutic target for the treatment of cognitive deficits associated with schizophrenia, Alzheimer's disease, Parkinson's disease, and attention-deficit/hyperactivity disorder. Activation of α(7) nAChRs improved sensory gating and cognitive function in animal models and in early clinical trials. Here we describe the novel highly selective α(7) nAChR positive allosteric modulator, 2-[[4-fluoro-3-(trifluoromethyl)phenyl]amino]-4-(4-pyridinyl)-5-thiazolemethanol (JNJ-1930942).
View Article and Find Full Text PDFThe glycoside hydrolase activity of Saccharomyces cerevisiae and Brettanomyces custersii was examined on sour cherry (Prunus cerasus L.) glycosides with bound volatile compounds. Refermentations by the beta-glucosidase-negative S.
View Article and Find Full Text PDF