Publications by authors named "H Vedder"

The role of transcription factors in photoreceptor gene regulation is fairly well understood, but knowledge of the cell-type-specific function of transcriptional cofactors remains incomplete. Here, we show that the transcriptional corepressor promotes rod differentiation and represses short-wavelength cone genes in long-wavelength cones in zebrafish. In retinas, red cones are transformed into hybrid red/ultraviolet (UV) cones, green cones are absent, the number of blue cones is approximately doubled, and the number of rods is greatly reduced.

View Article and Find Full Text PDF
Article Synopsis
  • Duplications of a specific region on the X chromosome known as Xq28,distal have been linked to schizophrenia (SCZ) and intellectual disability in both males and females, though the exact genes involved remain unclear.
  • This study aimed to explore rare genetic variants in the Xq28,distal locus and how they might contribute to SCZ risk, using advanced sequencing methods on a large sample of patients and controls.
  • Despite identifying some potentially functional variants, the analysis did not find a significant difference between patients with SCZ and controls, suggesting that more research is needed to understand the role of X-chromosomal factors in neuropsychiatric disorders.
View Article and Find Full Text PDF

Bipolar disorder (BD) is a complex mood disorder with a strong genetic component. Recent studies suggest that microRNAs contribute to psychiatric disorder development. In BD, specific candidate microRNAs have been implicated, in particular miR-137, miR-499a, miR-708, miR-1908 and miR-2113.

View Article and Find Full Text PDF
Article Synopsis
  • Bipolar disorder has a genetic basis and complex causes; a large study compared nearly 42,000 bipolar patients with over 371,000 healthy controls, revealing 64 genomic regions linked to the disorder.
  • The findings showed that risk-related genes are heavily associated with brain functions, particularly in areas like the prefrontal cortex and hippocampus, and they include targets for various medications.
  • The research also distinguished between bipolar disorder types I and II, revealing a close genetic relationship and highlighting 15 specific genes that could lead to new treatment options and further investigations.
View Article and Find Full Text PDF
Article Synopsis
  • * The analysis discovered 30 significant genetic loci linked to bipolar disorder, including 20 that hadn't been previously identified, which involve genes related to ion channels and neurotransmitter systems.
  • * The study also showed that Bipolar I disorder has a genetic connection to schizophrenia, particularly linked to psychosis, while Bipolar II disorder is more closely related to major depressive disorder, shedding light on potential biological mechanisms and clinical implications.
View Article and Find Full Text PDF