Purpose: To investigate the developmental competence of ovarian tissue oocytes from patients with gynecological tumors using a biphasic in vitro maturation system with capacitation (CAPA-IVM) in comparison with standard IVM.
Methods: This sibling pilot study included 210 oocytes in 10 patients with gynecological malignancies. After ovariectomies, ovaries were cut into even halves and immature cumulus-oocyte complexes (COCs) were retrieved from the ovarian tissue.
Purpose: To investigate the effectiveness of a biphasic IVM culture strategy at improving IVM outcomes in oocytes from small follicles (< 6 mm) compared with routine Standard IVM in patients with polycystic ovaries.
Methods: This prospective pilot study was performed in 40 women with polycystic ovaries whose oocytes were randomized to two IVM culture methods. Patients received a total stimulation dose of 450 IU rFSH.
Study Question: Does imprinted DNA methylation or imprinted gene expression differ between human blastocysts from conventional ovarian stimulation (COS) and an optimized two-step IVM method (CAPA-IVM) in age-matched polycystic ovary syndrome (PCOS) patients?
Summary Answer: No significant differences in imprinted DNA methylation and gene expression were detected between COS and CAPA-IVM blastocysts.
What Is Known Already: Animal models have revealed alterations in DNA methylation maintenance at imprinted germline differentially methylated regions (gDMRs) after use of ARTs. This effect increases as more ART interventions are applied to oocytes or embryos.
Study Question: Are meiotic and developmental competence of human oocytes from small (2-8 mm) antral follicles improved by applying an optimized IVM method involving a prematuration step in presence of C-Type Natriuretic Peptide (CNP) followed by a maturation step in presence of FSH and Amphiregulin (AREG)?
Summary Answer: A strategy involving prematuration culture (PMC) in the presence of CNP followed by IVM using FSH + AREG increases oocyte maturation potential leading to a higher availability of Day 3 embryos and good-quality blastocysts for single embryo transfer.
What Is Known Already: IVM is a minimal-stimulation ART with reduced hormone-related side effects and risks for the patients, but the approach is not widely used because of an efficiency gap compared to conventional ART. In vitro systems that enhance synchronization of nuclear and cytoplasmic maturation before the meiotic trigger are crucial to optimize human IVM systems.
C-type natriuretic peptide (CNP) and its receptor natriuretic peptide receptor 2 (NPR2) play a paramount role in the maintenance of oocyte meiotic arrest in antral follicles via the regulation of the intra-oocyte levels of cyclic guanosine monophosphate and cyclic adenosine monophosphate. We investigated the potential of CNP 1) to maintain oocyte meiotic arrest during a prolonged prematuration culture and 2) to sustain acquisition of developmental competence of immature cumulus-oocyte complexes (COCs). Compact COCs were collected from small antral follicles of prepubertal unprimed mice and placed in prematuration culture under different CNP-supplemented media conditions.
View Article and Find Full Text PDF