Morphological and biochemical effects were induced at the subcellular level in the skeletal muscle, heart and liver of male rats as a result of feeding with EPA, DHA, and 3-thia fatty acids. The 3-thia fatty acid, tetradecylthioacetic acid (TTA) and EPA induced mitochondrial growth in type I muscle fibers in both the diaphragm and soleus muscle, and the size distribution of mitochondrial areas followed a similar pattern. Only the 3-thia fatty acid induced mitochondrial growth in type II muscle fibers.
View Article and Find Full Text PDFDecreased triacylglycerol synthesis within hepatocytes due to decreased diacylglycerol acyltransferase (DGAT) activity has been suggested to be an important mechanism by which diets rich in fish oil lower plasma triacylglycerol levels. New findings suggest that eicosapentaenoic acid (EPA), and not docosahexaenoic acid (DHA), lowers plasma triacylglycerol by increased mitochondrial fatty acid oxidation and decreased availability of fatty acids for triacylglycerol synthesis. To contribute to the understanding of the triacylglycerol-lowering mechanism of fish oil, the different metabolic properties of EPA and DHA were studied in rat liver parenchymal cells and isolated rat liver organelles.
View Article and Find Full Text PDFHypolipidaemic fatty acid derivatives and polyunsaturated fatty acids decrease concentrations of plasma triacylglycerol by mechanisms that are not fully understood. Because poor susceptibility to beta- and/or omega-oxidation is apparently a determinant of the peroxisome proliferating and hypolipidaemic capacity of fatty acids and derivatives, the relative importance of activation of the peroxisome-proliferator-activated receptor alpha (PPARalpha), fatty acid oxidation and triacylglycerol synthesis were examined. We have compared the effects of differentially beta-oxidizable fatty acids on these parameters in primary cultures of rat hepatocytes.
View Article and Find Full Text PDF