Publications by authors named "H Unalan"

The assessment of phenolic compounds in food samples, environmental samples, and medical applications has gained importance recently. Here, we present research on novel conjugated polymer nanoparticles (P-PimBzBt NPs) and their composites with two-dimensional titanium disulfide nanosheets (2D-TiS) for electrochemical tyrosinase (TYR)-based catechol detection. P-PimBzBt NPs are decorated with 2D-TiS to enhance the electrochemical performance for biosensing.

View Article and Find Full Text PDF

This study presents a pioneering investigation of hybrid bismuth-tin (BiSn) liquid metal particles for photothermal applications. It is shown that the intrinsic core-shell structure of liquid metal particles can be instrumentalized to combine the broadband absorption characteristics of defect-rich nano-oxides and the high light-to-heat conversion efficiency of metallic particles. Even though bismuth or tin does not show any photothermal characteristics alone, optimization of the core-shell structure of BiSn particles leads to the discovery of novel, highly efficient photothermal materials.

View Article and Find Full Text PDF

Iontronic pressure sensors hold significant potential to emerge as vital components in the field of flexible and wearable electronics, addressing a variety of applications spanning wearable technology, health monitoring systems, and human-machine interactions. This study introduces a novel iontronic pressure sensor structure based on a seamlessly deposited TiCT MXene layer onto highly porous melamine foam as parallel plate electrodes and an ionically conductive electrolyte of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide/thermoplastic polyurethane coupled with carbon cloth as current collecting layers for improved sensitivity and high mechanical stability of more than 7000 cycles. MXene-deposited melamine foam-based iontronic pressure sensors (MIPS) showed a high sensitivity of 5.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers added MnO nanoparticles to PVP polymer nanofibers to improve their ability to limit light, using different concentrations of the nanoparticles.
  • Scanning Electron Microscopy (SEM) confirmed that the MnO nanoparticles were well integrated into the nanofibers, and increasing their concentration changed the optical characteristics, such as widening the band gap energy.
  • The study found that while higher concentrations of MnO enhanced nonlinear absorption (NA) behavior, it eventually weakened at very high light intensities, indicating a complex interaction of absorption mechanisms that can be useful in optoelectronic applications.
View Article and Find Full Text PDF

In this proof-of-concept study, cardiomyogenic differentiation of induced pluripotent stem cells (iPSCs) is combined with energy harvesting from simulated cardiac motion in vitro. To achieve this, silk fibroin (SF)-based porous scaffolds are designed to mimic the mechanical and physical properties of cardiac tissue and used as triboelectric nanogenerator (TENG) electrodes. The load-carrying mechanism, β-sheet content, degradation characteristics, and iPSC interactions of the scaffolds are observed to be interrelated and regulated by their pore architecture.

View Article and Find Full Text PDF