Publications by authors named "H U Danzebrink"

In this paper, an optical imaging module design for an astigmatic detection system (ADS) is presented. The module is based on a commercial optical pickup unit (OPU) and it contains a coaxial illuminant for illuminating a specimen. Furthermore, the imaging module facilitates viewing the specimen and the detection laser spot of the ADS with a lateral resolution of approximately 1 μm without requiring the removal of an element of the OPU.

View Article and Find Full Text PDF

In this work, an anti-drift and auto-alignment mechanism is applied to an astigmatic detection system (ADS)-based atomic force microscope (AFM) for drift compensation and cantilever alignment. The optical path of the ADS adopts a commercial digital versatile disc (DVD) optical head using the astigmatic focus error signal. The ADS-based astigmatic AFM is lightweight, compact size, low priced, and easy to use.

View Article and Find Full Text PDF

This review paper summarizes the European nanometrology landscape from a technical perspective. Dimensional and chemical nanometrology are discussed first as they underpin many of the developments in other areas of nanometrology. Applications for the measurement of thin film parameters are followed by two of the most widely relevant families of functional properties: measurement of mechanical and electrical properties at the nanoscale.

View Article and Find Full Text PDF

A metrological large range atomic force microscope (Met. LR-AFM) has been set up and improved over the past years at Physikalisch-Technische Bundesanstalt (PTB). Being designed as a scanning sample type instrument, the sample is moved in three dimensions by a mechanical ball bearing stage in combination with a compact z-piezostage.

View Article and Find Full Text PDF

A combined system for far- and near-field optical spectroscopy consisting of a compact scanning near-field optical microscope and a dedicated spectrometer was realized. The set-up allows the optical investigation of samples at temperatures from 10 to 300 K. The sample positioning range is as large as 5 x 5 x 5 mm3 and the spatial resolution is in the range of 1.

View Article and Find Full Text PDF