Flexible thermoelectric devices (TEDs) exhibit adaptability to curved surfaces, holding significant potential for small-scale power generation and thermal management. However, they often compromise stretchability, energy conversion, or robustness, thus limiting their applications. Here, the implementation of 3D soft architectures, multifunctional composites, self-healing liquid metal conductors, and rigid semiconductors is introduced to overcome these challenges.
View Article and Find Full Text PDFAim: To compare the clinical and radiological outcomes of unilateral percutaneous kyphoplasty (PKP) surgeries performed using 3D printing technology in patients with osteoporotic compression fractures to conventional unilateral PKP surgeries.
Material And Methods: Patients with acute painful single-level osteoporotic vertebral compression fracture (OVCF) who need surgical treatment were divided into two groups: group A (patients who had 3D template-guided PKP) and group B (patients who conventional PKP). To compare the two surgical procedures, Total Absorbed Radiation Dose (TARD), pre- and postoperative visual analog scale (VAS) scores, and Total Surgery Time (TST) were calculated and compared between groups in both surgical groups.
The comprehensive properties of high-entropy alloys (HEAs) are highly-dependent on their phases. Although a large number of machine learning (ML) algorithms has been successfully applied to the phase prediction of HEAs, the accuracies among different ML algorithms based on the same dataset vary significantly. Therefore, selection of an efficient ML algorithm would significantly reduce the number and cost of the experiments.
View Article and Find Full Text PDFThree dimensional freeze printing (3DFP) combines the advantages of freeze casting and additive manufacturing to fabricate multifunctional aerogels. Freeze casting is a cost-effective, efficient, and versatile method capable of fabricating micro-scale porous structures inside the aerogels for many different applications. The 3DFP provided the capability of fabricating highly customized geometries with controlled microporous structures as well.
View Article and Find Full Text PDFObjectives: To investigate the artefacts caused by different disinfection and protection methods that can be used for infection control of photostimulable phosphor (PSP) plates.
Methods: The plates that were enveloped with single or double envelopes were sprayed with an alcohol-containing solution or wiped with an alcohol-containing tissue. Four PSP groups with two plates in each group were formed (A = wiping single envelope, B = wiping double envelopes, C = spraying onto single envelope, and D = spraying onto double envelopes).