Acta Crystallogr B Struct Sci Cryst Eng Mater
December 2024
Nickel orthovanadate is a promising material with potential applications in energy storage and photocatalytic devices. The crystal structure of NiVO at 299 (3) K and 1323 (8) K was studied using X-ray powder diffraction. The sample was a single-phase orthorhombic kagome-staircase-Ni(VO)-type structure (space group Cmca) at both temperatures.
View Article and Find Full Text PDFHexagonal boron nitride (h-BN) is recognized as a 2D wide bandgap material with unique properties, such as effective photoluminescence and diverse lattice parameters. Nitride alloys containing h-BN have the potential to revolutionize the electronics and optoelectronics industries. The energy band structures of three boron-containing nitride alloys-BAlN, BGaN, and BInN-were calculated using standard density functional theory (DFT) with the hybrid Heyd-Scuseria-Ernzerhof (HSE) function to correct lattice parameters and energy gaps.
View Article and Find Full Text PDFThe rocksalt structure of ZnO has a very promising bandgap for optoelectronic applications. Unfortunately, this high-pressure phase is unstable under ambient conditions. This paper presents experimental results for rocksalt-type ZnO/MgO superlattices and theoretical considerations of the critical thickness of MgZnO layers.
View Article and Find Full Text PDFWhile synthesis methods for pure ZnO nanostructures are well established, an efficient technique for the growth of ZnO-based nanowires or microrods that incorporate any type of quantum structure is yet to be established. Here, we report on the fabrication and optical properties of axial Zn1-xMgxO/ZnO/Zn1-xMgxO quantum wells that were deposited by molecular beam epitaxy on ZnO microrods obtained using a hydrothermal method. Using the emission energy results found in cathodoluminescence measurements and the results of a numerical modeling process, we found the quantum well width to be 4 nm, as intended, at the growth stage.
View Article and Find Full Text PDFWe show that Be exhibits amphoteric behavior in GaN, involving switching between substitutional and interstitial positions in the lattice. This behavior is observed through the dominance of Be_{Ga} in the positron annihilation signals in Be-doped GaN, while the emergence of V_{Ga} at high temperatures is a consequence of the Be impurities being driven to interstitial positions. The similarity of this behavior to that found for Na and Li in ZnO suggests that this could be a universal property of light dopants substituting for heavy cations in compound semiconductors.
View Article and Find Full Text PDF