Publications by authors named "H Tecle"

Structure-activity relationships for inhibition of erbB1, erbB2, and erbB4 were determined for a series of quinazoline- and pyrido[3,4-d]pyrimidine-based analogues of the irreversible pan-erbB inhibitor, canertinib. Cyclic amine bearing crotonamides were determined to provide rapid inhibition of cellular erbB1 autophosphorylation and good metabolic stability in liver microsome and hepatocyte assays. The influence of 4-anilino substitution on pan-erbB inhibitory potency was investigated.

View Article and Find Full Text PDF

By targeting an extended region of the conventional 'DFG-out' pocket of p38alpha, while minimizing interactions with the specificity pocket and eliminating interactions with the adenine binding site, we are able to design and synthesize a number of pyrazole-urea based DFG-out p38alpha inhibitors with good potencies, and excellent selectivity.

View Article and Find Full Text PDF

The design, synthesis and utility of fluorescence probes that bind to the DFG-out conformation of p38alpha kinase are described. Probes that demonstrate good affinity for p38alpha, have been identified and one of the probes, PF-04438255, has been successfully used in an high throughput screening (HTS) assay to identify two novel non-classical p38alpha inhibitors. In addition, a cascade activity assay was utilized to validate the selective binding of these non-classical kinase inhibitors to the unactive form of the enzyme.

View Article and Find Full Text PDF

An approach and preliminary results for utilizing legacy MEK inhibitors as templates for a reiterative structural based design and synthesis of novel, type III NCKIs (non-classical kinase inhibitors) is described. Evidence is provided that the MEK-pocket or pockets closely related to it may exist in kinases other than MEK.

View Article and Find Full Text PDF

A novel series of benzhydroxamate esters derived from their precursor anthranilic acids have been prepared and have been identified as potent MEK inhibitors. 2-(2-Chloro-4-iodo-phenylamino)-N-cyclopropylmethoxy-3,4-difluoro-benzamide, CI-1040, was the first MEK inhibitor to demonstrate in vivo activity in preclinical animal models and subsequently became the first MEK inhibitor to enter clinical trial. CI-1040 suffered however from poor exposure due to its poor solubility and rapid clearance, and as a result, development of the compound was terminated.

View Article and Find Full Text PDF