Publications by authors named "H TIVEY"

Fibroblasts from the progeroid Nijmegen breakage syndrome that express a truncated version of the nibrin protein (NBN(p70)) undergo premature senescence and have an enlarged morphology with high levels of senescence-associated β-galactosidase, although they do not have F-actin stress fibres. Growth of these fibroblasts in the continuous presence of p38 inhibitors resulted in a large increase in replicative capacity and changed the cellular morphology so that the cells resembled young normal fibroblasts. A similar effect was seen using an inhibitor of the p38 downstream effector kinase MK2.

View Article and Find Full Text PDF

Ataxia-telangiectasia and rad3 (ATR)-related Seckel syndrome is associated with growth retardation and premature aging features. ATR-Seckel fibroblasts have a reduced replicative capacity in vitro and an aged morphology that is associated with activation of stress-associated p38 mitogen-activated protein kinase and phosphorylated HSP27. These phenotypes are prevented using p38 inhibitors, with replicative capacity restored to the normal range.

View Article and Find Full Text PDF

Werner Syndrome (WS) is a human segmental progeria resulting from mutations in a DNA helicase. WS fibroblasts have a shortened replicative capacity, an aged appearance, and activated p38 MAPK, features that can be modulated by inhibition of the p38 pathway. Loss of the WRNp RecQ helicase has been shown to result in replicative stress, suggesting that a link between faulty DNA repair and stress-induced premature cellular senescence may lead to premature ageing in WS.

View Article and Find Full Text PDF

Rothmund-Thomson fibroblasts had replicative lifespans and growth rates within the range for normal fibroblasts; however, they show elevated levels of the stress-associated p38 MAP kinase, suggestive of stress during growth. Treatment with the p38 MAP kinase inhibitor SB203580 increased both lifespan and growth rate, as did reduction of oxidative stress using low oxygen in some strains. At replicative senescence p53, p21(WAF1) and p16(INK4A) levels were elevated, and abrogation of p53 using shRNA knockdown allowed the cells to bypass senescence.

View Article and Find Full Text PDF