Cardiovascular disease (CVD) is the leading cause of death for women worldwide. One of the risk factors for CVD in women is complications during pregnancy. Pregnancy complications include a wide arena of pathologies, including hypertension, preeclampsia, gestational diabetes, preterm delivery and miscarriage.
View Article and Find Full Text PDFHigh-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the eventwise average transverse momentum [P([p_{T}])]. Disentangling the contributions from fluctuations in the nuclear overlap size (geometrical component) and other sources at a fixed size (intrinsic component) remains a challenge. This problem is addressed by measuring the mean, variance, and skewness of P([p_{T}]) in ^{208}Pb+^{208}Pb and ^{129}Xe+^{129}Xe collisions at sqrt[s_{NN}]=5.
View Article and Find Full Text PDFBackground: In neurodegenerative disease such as Alzheimer's disease and stroke, the brain transitions to pro-inflammatory profile, where microglia and T-cells in the brain have increase inflammatory profiles, along with increased Kv1.3 potassium channel abundance. Pharmacological blockade of Kv1.
View Article and Find Full Text PDFThe utilization of β-fluoroamines as pharmaceutical components for drug development has attracted a considerable amount of interest. However, direct access to tertiary β-fluoroamines is challenging. We herein report the rhodium-catalyzed asymmetric amination of tertiary allylic trichloroacetimidates with anilines and cyclic aliphatic amines to access tertiary β-fluoroamines, where the α-carbon atom is bonded to four different substituents, in good yield with high levels of enantioselectivity.
View Article and Find Full Text PDFWe report the application of organoiridium complexes as catalytic agents for the detoxification of biogenic reactive aldehyde species (RASP), which are implicated in the pathogenesis of neurodegenerative disorders. We show that Ir complexes functionalized with phosphonium cations localize selectively in the mitochondria and have better cellular retention compared to that of their parent Ir species. In a cell model for Parkinsonism, the mitochondria-targeted iridium catalysts exhibited superior cell protecting abilities and longer-lasting effects (up to 6 d) than conventional RASP scavengers, which failed to be effective beyond 24 h.
View Article and Find Full Text PDF