Publications by authors named "H T Haffner"

Quantum mechanics requires the time evolution of the wave function to be linear. While this feature has been associated with the preservation of causality, a consistent causal nonlinear theory was recently developed. Interestingly, this theory is unavoidably sensitive to the full physical spread of the wave function, rendering existing experimental tests for nonlinearities inapplicable.

View Article and Find Full Text PDF

We demonstrate coupling between the motions of two independently trapped ions with a separation distance of 620  μm. The ion-ion interaction is enhanced via a room-temperature electrically floating metallic wire which connects two surface traps. Tuning the motion of both ions into resonance, we show flow of energy with a coupling rate of 11 Hz.

View Article and Find Full Text PDF

Electrons and ions trapped with electromagnetic fields have long served as important high-precision metrological instruments, and more recently have also been proposed as a platform for quantum information processing. Here we point out that these systems can also be used as highly sensitive detectors of passing charged particles, due to the combination of their extreme charge-to-mass ratio and low-noise quantum readout and control. In particular, these systems can be used to detect energy depositions many orders of magnitude below typical ionization scales.

View Article and Find Full Text PDF

The high degree of control available over individual atoms enables precision tests of fundamental physical concepts. In this Letter, we experimentally study how precision measurements can be improved by preparing entangled states immune to the dominant source of decoherence. Using ^{40}Ca^{+} ions, we explicitly demonstrate the advantage from entanglement on a precision test of local Lorentz invariance for the electron.

View Article and Find Full Text PDF

We describe the design, fabrication, and operation of a novel surface-electrode Paul trap that produces a radio-frequency-null along the axis perpendicular to the trap surface. This arrangement enables control of the vertical trapping potential and consequentially the ion-electrode distance via dc-electrodes only. We demonstrate the confinement of single Ca ions at heights between 50 m and 300 m above planar copper-coated aluminum electrodes.

View Article and Find Full Text PDF